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Representing nonlinear optimization problems as mixed-integer

programs has largely been considered as; 1) an art ith few unresolved
theoretical issues, and 2) a fairly standard preprocessing' tine when

combined with several ad hoc modelling improvements which have evolved

through computational experience. The more common avenue of research in

mixed-integer programming has focused upon finding improved algorithms

and heuristics to solve the problemsf assuming a standard mixed-integer

sthesis, anta~
representation exists."In ths thssw tk' step backwards" and

re-examinesAthe theoretical issues and subtleties involved in representing

problems with mixed-integer representations. .

As a result of our theoretical investigation, necessary and

sufficient conditions are given which guarantee the existence of a mixed

integer representation for a given problem. The conditions explain some

of the subtleties surrounding well-known problems such as the fixed-

charge problem, which requires an upper bound on the variable. Our

results, always in the rational field, concern the representability of a

finite union of sets. Many results extend Rockafellar's finite basis

:theorems.



In our theoretical investigation, we employ a system of

inequalities derived from disjunctive programming to help prove the

existence of a mixed-integer representation for a finite union of

polyhedra whose recession directions satisfy certain criteria. While the

system of inequalities is not new, its use as a mixed-integer program

representation is new. Another mixed-integer representation is presented

which utilizes the "extreme points" of the individual polyhedra (when

representing a finite union of polyhedra). Both representations are

automatic, easy to use, and both have the property of sharpness.

Sharpness concerns the mount of information lost as the integer

variables are relaxed to the continuous rational field.

Whether a particular representation is sharp or not often

determines whether a problem is solvable within minutea of computation or

remains unsolved after hour. of computation. Our automatic representa-

tions are always sharp, they often preserve their sharpness after

variable arbitration (as in a branch-and-bound setting), and have shown

% tremendous efficiency and time savings for the problems and modellings

explored.
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CHAPTER l

INTRODUCTION

; ~ A widely accepted view in integer programm~ing research is that

" progress, in utilizing (mixed-) integer formulations to solve real-worldgM problems, vill rely primarily on algorithm advances (for general and

special structures) and clever coding tricks. In this view, we are

perceived as already knowing how to represent a real-world problem with

integer variables; those simple "formulation techniques" appear early in

'C the subject and by now are widespread in the masters'-level and even

./ undergraduate-level textbooks. (see e.g. [141, (421) However, since in

the 1970's, the experience of practitioners indicate that some major

issues of formulation have been overlooked. For example, Geoffrion and

Graves 116) solve a large scale multicommodity distribution problem which

includes fixed charges. In their modelling, they notice that to

economize on the number of constraints, a standard linear programming

technique, results in more iterations for convergence to the optimal

solution. In another example, Williams 1413 finds a similar advantage of

disaggregating constraints for logical system problems, which he mcdels

as generalized set-covering problems. Both of the above references

indicate a computational need to reformulate HIP representations before

attempting to solve them.
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One of the earliest integer models is the Fixed-Charge problem in

which a fixed cost is incurred (the ob ective is to minimize costs) when

a certain activity level is non-zero (see Dantzig 110]). This very
Z common problem can be modelled as a mixed-integer program (HIP), provided

thtan explicit upper bound is known for the variable which "triggers"'

tefixed cost. A seemingly similar problem is the Fixed-Benefit

problem, in which a benefit (rebate) is received, rather than a cost

incurred when the variable is nonzero. This problem cannot be

represented as a HIP even with a known upper bound for the "trigger"

variable. As we shall see in Chapter 2, the Fixed-Benefit case requires

V an explicit minimum usage level which must be met before the benefit is

received. if it is to be represented via (bounded) integer variables.

In contrasting the fixed-charge and fixed-benefit problems, we

have illustrated one of the subtleties of modelling with integer

variables that we will treat in this thesis. Several other aspects of

integer modelling will be discussed, and we present here (we hope

convincing) evidence of our two theses, namely that: 1) There are

Substantial advantages to using "better" integer models; and 2) The

study of integer modelling has many aspects which are amenable to exact,

analytic development.

In the late sixties, and early seventies, Benichou, et al. (61,

Land and Doig, Beale, and others implement improved Branch-and-Bound

based commercial mixed-integer programming systems capable of solving

many practical industrial MIPS (413. These algorithmic advances provide

opportunities 'o conduct computational experiments to compare various
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ad hoc modellings and reformulations. The results of these experiments,

notably those of H. P. Williams, and Geoffrion and Graves (who used a

specially-designed enumerative code) motivate others to re-examine MIP

modelling issues for computational improvements.

Williams 141) finds, in comparing modellings, that "the superior

formulation is always the one which is "tighter" in a continuous sense."

By "tighter," he means the continuous optimum (integrality relaxed) is

closer to the integer optimum. Williams experiments involve integer

variables in both flow problems and logic problems. His ad hoc methods

of problem reformulation involve coefficient reduction and disaggregation

of constraints.

Geoffrion and Graves 116] model a multicommodity distribution

system and provide a "lesson on Model Representation." (see Section 5 of

1161.) In their flow problem, they provide computational results

favoring a modelling which disaggregates constraints. They realize that

the disaggregation, in the relaxed case, provides the convex hull of the

original integer feasible solutions. They also note that the price of

the tighter bound and reduction in Branch-and-Bound tree branching is the

additional time required to solve the larger LP relaxation at each node

-of the Branch-and-Bound tree. Based upon their computational and

theoretical results, they "suggest a general methodology for discovering

-improved model representations: for various subsets of contraints

involving some of the integer variables, try to explicitly derive the

convex hull of the integer feasible points." Much of our work in this
-.-J

, 6- o. . ..,

.4. . . .. . .. . . . . ^ ,, .. , .
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thesis is in effect a partial reply to their request for such a

methodology.

Rardin and Choe 140] disaggregate relevant constraints of a fixed-

charge multicommodity network flow problem by way of an arc-node

representation which explictly defines each possible path from each

source i, to all sinks j. While improving the value of the LP

relaxation, this technique often greatly increases the size of the

resulting HIP. They provide computational results, supporting the

effectiveness of the improved LP relaxations.

Oley and Sjoquist 138], Crowder, Johnson, and Padberg [9],

Johnson, Kostreva, and Suhl 128] automate the process of coefficient

reduction and constraint disaggregation. Oley and Sjoquist implement

their reformulation techniques in CDC's APEX IV math programming system.

They employ a pruning technique similar to that found in Chapter V of

this thesis, and a "big H" reduction method similar to that employed in

Chapter II of this thesis.

Johnson, et al. [28] employ similar reductions and disaggregations

in a large scale planning scenario. In their problem, they encounter

fixed-charges, either/or type constraints, and special ordered set (SOS)

variables. They do not disaggregate the either/or type constraints as in

Chapter II of this thesis.

The reformulation sources mentioned above appeal to the

computational effectiveness" justification of their techniques. While

their results are extremely useful, they do not systematically address

the issue of existence of a MIP modelling for a given problem, nor

* . .4 3 .j . . . . - - -. -
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techniques for providing modellings with tight linear relaxations, nor

the "hereditary" effects of various formulations as branching proceeds in

a branch-and-bound procedure.

As we shall see later in this thesis, improvements in modelling

techniques derive from what begins as theoretical investigations. In the

imid seventies, Ibaraki [211, and Meyer [331, [34], 135] launch a

systematic study of modelling problems as MIPs. In accounting for their

earlier results on the existence of modellings, our proofs in Chapter 1I

will amount to formulation techniques which have, and hereditarily

preserve, tight linear relaxations. Our results are either derived from,
.v

or motivated by disjunctive programming. In later chapters of the

thesis, we report experiments on the new formulation techniques.

- As in our approach, Bales [I] also expresses the discrete

optimization problem as the intersection of unions of polyhedra. In that

* .ipaper, he introduces operations to reduce the number of intersections,

which strengthens the relaxations. In this manner one creates a

hierarchy of relaxations ranging from the original LP relaxation 
to the

exact convex hull of integer feasible points. This hierarchy of

relaxations in some respects goes beyond the theoretical work reported

here, although it is similar to the lattice of co-propositions in [241

'I that contains several hierarchies.

In Chapter II of this thesis, we develop necessary and sufficient

conditions concerning when a union of polyhedra is HIP representable. in

doing so, we develop an automatic MIP representation for any bounded-XIP

representable union of polyhedra.
.9

J.

.12

• • . ~~~~~-. - . . "-* - , .- o.,. . . , . ', . " , :. . . . 5* . .... * *..
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We then focus upon the sharpness of this HIP representation.

Sharpness holds when the LP relaxation of a HIP modelling is exactly the

convex hull of integer feasible solutions. Our automatic HIP

representation is always sharp. Typically, it is obtained for a subpart

of the whole mixed-integer program, such as a fixed-charge, piecewise-

linear function, either/or constraints, etc. This part must be then

"linked" into the main program, and typically the result is not sharp for

the whole program. The issues raised by the "linkage" process are it,

part the substance of Balas' hierarchy in [l].

In Chapter III we review bounded-MIP representability and conduct

two experiments comparing our "sharp" representations to common

representations found in current literature use. Experiments are

necessary since the SHARP representation (which subsumes the

disaggregation techniques employed by others) often, but not always,

results in much larger problems in terms of both constraints and

continuous variables.

The first experiment compares our larger sharp MIP modelling of

S"either/or" type constraints with a more concise, non-sharp modelling

found in many current articles and textbooks ([141 for instance). The

dramatic lack of sharpness of the common modelling proves to be its major

defect, as the sharp modelling performs faster in terms of cpu seconds

and more efficiently in terms of Branch-and-Bound nodes solved (many

instances show an improvement of over 100%, increasing with problem

size). From our results, only in very small instances did the "non-

N. .-. . •,. .. .. N, -. ... ,.. . . 'N ., - N. -, . NN %
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sharp" model perform faster than our "sharp" representation. As others

have found using ad hoc techniques, we find "sharpness" as a key

ingredient to successful integer programs.

The second experiment in Chapter 111, tests whether it is

computationally favorable to disaggregate a non-linear function into

"easier" components; model each component individually; and then "link"

the models together by termvise addition in the objective function before

solving the final MIP. We test this aspect of modelling linkage on a

piecewise-linear function with fixed-charges. The results favor the

modelling of the entire function, even when the "linked" modelling parts

are modelled using our sharp modelling.

Besides testing modelling linkage, this experiment also provides

evidence favoring "hereditarily" sharp models. Unless some variable Co-

ordination is performed upon the linked models, they rarely will be

9i"  hereditarily sharp. Thus, once the Branch-and-Bound algorithm begins to
4,

arbitrate variables, the modelling loses it sharpness, resulting in many

more branch-and-bound nodes.

In Chapter IV we provide computational support of a common

conjecture that the proximity of the convex hull of the integer feasible

solutions to the set of integer feasible solutions is a guide towards

problem difficulty. For this experiment, we use the Fixed-Charge, and

Fixed-Benefit problems mentioned earlier. The Fixed-Charge problem is a

very well-known difficult mixed-integer problem. On the other hand, it

turns out that the Fixed-Benefit problem is relatively easy to solve as a

,4°

.*. •.o • - ** '4 e - ".°- 
'

- . " r O.o% .o.
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HIP. The Fixed-Charge problem usually has a large gap between the two

sets mentioned above, while the Fixed-Benefit problem with low usage

levels (as common in practice) has a much smaller, nearly

indistinguishable difference between the set of integer feasible points

and its corresponding convex hull. Our computational results support the

stated conjecture, as the Fixed-Charge problem is much more difficult

than the Fixed-Benefit problem.

In Chapter V, we include two experiments involving the modelling

of propositional logic problems as mixed-integer programs. We find these

problems extremely easy to solve using elementary modelling techniques

that have been standard since the 1960's. Also, we can show an advantage

of our modelling techniques over the standard ones.

. In summary, we have not only developed theoretical conditions

concerning the existence of hiP representations, but have, in doing go,

developed an automatic modelling for every bounded-HIP representable

problem instance. The modelling developed is always sharp, a property

which we, and others, have found to greatly improve computational

performance in a Branch-and-Bound mixed-integer programming system. We

m* provide several experiments to test various concepts and properties of

our automatic modellings, and HIP modellings in general. We find

Sharpness and hereditary sharpness as essential properties for successful

model building. The fact that our modelling is completely automatic, and

always sharp, greatly enhances its use as a modelling technique.

%

'A
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CHAPTER 11

MODELLING WITH INTEGER VARIABLES

Y.. I nt roduct ion

The interest in modelling practiLal and mathematical problems as

integer and mixed-integer programs begins with a paper by Dantzig 14).

Since that paper, many "standard problem formulations" are routinely

available in elementary textbooks. However, not until the more recent

work of Meyer (19), [110) , 111] has there been thorough exploration, or,

a- perhaps, even awareness, of the "limits" of integer modelling. Our aim

in this chapter is to elucidate some of the subtleties of integer

modelling.

For example, the fixed-charged problem can be modelled without a

minimum usage constraint. On the other hand, the "fixed-benefit" problem

must contain a minimum usage stipulation (which must be met before the

benefit is received) before it can be modelled as on integer problem.

Our results explain why this is so.

in section I of this chapter, we find that, for bounded sets, or

functions defined on bounded domains (Lemma 2.1.2), the subtleties are

neither very complex, nor restrictive. However, for a few unbounded sets

the restrictions are so severe that, unless the unboundedness can be

removed, one would naturally seek a different mathematical formulation of

the sets. For example, many unbounded functions can be modelled as
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generalized linear complementarity problems, which have no integer

modelling (the set {x.y) 3 0 1 x-y - 0) is one such; see Theorem 2.1.7).

Even with the unboundedness removed, it is important to know that

a bound must be used. This kind of information occurred in Meyer's

earliest studies of integer modelling (9) in connection with the fixed-

charge problem (which is representable only in its bounded form, when

rational data are stipulated). This choice of a suitable bound can be a

major issue in algorithmic implementation.

In section 1, we develop basic definitions and many corollaries

which lead to the heart of our investigations into set representability.

Theorem 2.1.7 describes necessary and sufficient conditions for the union

of representable sets to be HIP-representable. In section 2, we explore

Meyer's concept of bounded representability, and develop necessary and

sufficient conditions for bounded MIP-representability (Theorem 2.2.1).

For bounded representable sets, our results guarantee one representation

in which all integer variables ore binary variables; furthermore, these

binary variables occur in a common set-partitioning constraint.

We then focus upon the implementation of MIP-representations, and

ask how "accurate" the representations are after the integer variables

*are "relaxed" to continuous (rational) variables, as in branch-and-bound

*algorithms (section 3). we easily show that the best possible relaxed

HIP-representation contains the convex hull of the original set. When

the specific HIP-representation is exactly the convex hull, it is called

a "sharp" representation. We provide sharp representations for many

models; most representations in common use are sharp.

.. -1-... .- - 4 .-.. 4 . "-

5%. •* s. 4 .S. '. .'. .- ; . . . p' . . .
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In our last section of this chapter (section 4), we show that

Meyer's bounded-HIP representability Theorems (91 are specific cases of

our Theorem 2.1.7 when all variables are restricted to the rational

field. We then apply a linear inequality HIP-representation for

polyhedra developed in section 1 to an example representation used by

*I *~Beale 13], and show that the two can be used interchangeably and that

both are "sharp" representations. Moreover, it typically occurs, when we

turn our representability techniques to problems treated earlier, that we

obtain the most efficient (fewest constraint) linear relaxation, even

while our relaxation is best possible (i.e. "sharp"). To do so may

require noting some algebraic simplifications for the specific problem,

but that is all. Our problem formulations are either derived from or

motivated by disjunctive programming [11, [7].

*. -. While Meyer's theory permits representations which involve

irrational data, we have restricted ourselves to rational represeaitations

only. This appears to cover all that is of practical interest, and so

*. our results are stated for the rational field only. In some cases, the
C.

results extend to the real field, but such issues can be addressed later

if they seem of interest.

Throughout this thesis, we denote the convex span respectively the

closure of set S as cony(S) respectively cl(S), and clconv(S) is the

closure of conv(S) 112). Similarily cone (S) denotes the convex cone

generated by S. The convex span and cone operations are taken only with

rational multipliers.

,. -.

a .. o .. a . ... ,* -
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We assume that the reader is familiar with the intended use of

MIP-representability in problem formulatior, as illustrated in Meyer's

41% j papers.

Section 1: Representability of the Finite Union of Representable Sets

We define a set S &Q (where Q denotes the rationals) as NIP-

representable if there are rational matrices A, A2 , A3, and vector b

with the property that: x c S, if and only if, for some u, v ) 0, with

u integer, we have

AIx + A2u+ A3v -b. (2.1.1)

We note that our definition extends to the case where x is constrained to

Cbe integer. I.e., let x - (x1,.. x n) and let I be any subset ofn

{I ,..., n); then if S is NIP-representable so is the set {x c Six i E Z

(integers) for all i e I) (this is an easy exercise). An extension of

our definition of MIP-representation is to functions: f is MIP-

representable if the set epi(f) is; where epi(f) - ((z,x) l z # f(x) and

f(x) is defined) denotes the epigraph of f. We also note that f has a

rational MIM4 on T in Meyer's sense [101 and only if f is MIP-

representable in the above sense.

Our first theorem is an extension of the finite basis theorem for

polyhedra (Rockafellar 112)).

"' Theorem 2.1.1

Suppose that S * 0 is NIP representable. There are constants a,

.... .............-............................ ,
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b ) 0 such that for all integers p ) 1, Sa+bp a and

S - S + pM, (2.1.2)
4. a+bp

where

n
S {x C S I , a ),, and (2.1.3)

i nni

H {x c Z ' for some u, v > 0, with u, v integer, (2.1.4)

A, Ax + A2u + A 3v 0).

Proof
The containment S -pS + pM is immediate once we show that

d - a+bp

S * 0. In fact, if x C S and x' c M then by a direct computation,
a~bp

x + px' C S.

.It We note that the nonempty set P, defined as

%'

{(x,u,v)1 A x + A2u + A v b; u, v > 0) (2.1.5)

is a polyhedron. Therefore, from the finite basis theorem, there are

.. ""t t t
-- disjoint finite sets J and K and points (xt, u , v ) of P for t e K with

Sj j

'"' ~~)P conv({(x , u , v ) J j })) + (2.1.6)

.,k k k)
loll cone(((x u , v ) k e K).

4.,,

' ,

1,
-,.. .-. . . .
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We define a' -maxix 1 and b I ix Ik1, and a - max{a",lx 1) for x £ S.
kcK

(Note, lx,- Ix1 11 2 1 *''n if x - x ,..., x )). Since b > 0

for p # 1 we have x £ Sa+pb. Thus Sa+bp 0 0 and we now must establish

the containment S rSa + pM.
a.bp

We may assume in what follows, that (x ) is an integer

vector for k C K (recall that Al. A2 , A3 , b are rational). In

particular, x £ H for k c K.

Let x C S. Then for some u, v > 0 with u integer, we have

(x,u,v) C P. Therefore there is a solution to

j"(j  pk k k)
(x,u,v) z A (x, ui v J) + k u , v , (2.1.7)

- ~.j k EK

1 = t ). X; ). E, j £ 3, T 0, k c K.
j j k

Let q denote the integer part of Tk and let f be the fractional part,
k k k

so that T + k ( 1, and q f > 0. Define

jjk k k(xU, u, .(x, u , + Z f , u , v ) (2.1.8a)
jcJ kcK

* * * k k k, u , v , u , v ). From (2.1.8a), (2.1.8b)

so we have x x' + x We must show that x' c S and x c pM

Since (x,u,v) - (x', u', v*) + (x , u , v ) and u and u are

4 ..- 4 ". . .

. -. -, ".- -
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integer vectors, u' is an integer vector. From (2.1.8a), (x', u',v') c

P. Hence x' C S. Also trom (2.1.5), and (2.1.8a),

k k
Ix'1 C a° + p E fklx 1 4 a' +pb. Thus x- C Sa+bp. Since x c H and q

kr.K
k*

is integer for k c K, we have x c pM from (1.8b).

Q.E.D.

We note that 2.1.1 defines any representable set S in terms of a

bounded part (S a+bp) and a discrete unbounded part (pM) as in the finite

basis theorem for polyhedra. For a £ Q, S is MIP-representable; hence

S a+bp is representable. In addition, M is an integral monoid with a

finite basis (see Jeroslow [8]).

Corollary 2.1.2

If S is both bounded and HIP-representable, S is a finite union of

polytopes.

Proof

It suffices to show that a bound can be placed on the vector u

occuring in the representation.

Assume that x C S. From the proof of Theorem 2.1.1, and since S

k
has no recession directions, we have x 0 for k E K. Hence in

(2.1.8a), x' = x and AIx + A2u + A3v = 0 with u, v" ) 0 and u'

integer. (recall x E S) A bound on lu'l is max lull + I *ukI directly

'."', j k K

from (2.1.8).

Q.E.D.

.p.

U.%

-. "



20

Corollary 2.1.3

If S is representable, conv(S) is a polyhedron.
'.

Proof

Apply (2.1.2) for p-1. Since M is a monoid we have

conv(Sa+b + M) - conv(S a+b ) + cone(). (2.1.9)

To establish (2.1.9), note that clearly

conv(Sa+b + M) r conv(S a+b ) + cone(m) (2.1.10)

is valid. To prove that

conv(Sab + ) *+  + cone(M), (2.1.11)

we have, for any v C conv(S + cone(M),-. : (a+b )

v ExA.s + r Ukmk, (2.1.12)

jJ k

where Z A l .A 0, uk  0, mk c M, and s S a+b .

let A1 > 0 (WLOG), then we have

m u Z Ukmk/A 1 . cone(M), and also (2.1.13)
*. k

?.9..
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v A A(s' + M) + E A -(s~ 0). (2.1.14)

-. But since (s' + m) c S *~ cone(M), then v c conv(S a 4 cone(M)).

Furthermore, if w - s + w', where w' c cone(M) and s c S a+b' then for

some integer D '0 1, Dw' le M, and by factoring,

s + W, l/D~s + Dw') + I/D(s+0) .. l/Dfs*O) (2.1.15)

.Nwhere (S* N'W*) E S + M and (s +0) c S + M. Therefore
a+b a~b

(s + w') c conv(S ab+ M), and

Sb + cone(M) c~conv(S b+ M). (2.1.16)

Finally,

conv(Sa) + cone(M) crv(S b+ cone(M)) rconvCS b+ M). (2.1.17)

which proves (2.1.9)

By Corollary 2.1.2, conv(S )is a polytope. Since M has a
a+b

finite basis, cone(M) is a polyhedral cone. By the converse to the

Finite Basis Theorem (Rockafellar [11]), cony(S) is a polyhedron.

* Q.E.D.

% %
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Corollary 2.1.4

NS is an HIP-representable set if and only if there is a bounded

HIP-representable set S' and an integral monoid M with a finite basis

such that S - S' + M.

Moreover, if S' is an HIP-representable set (bounded or not) and M

is an integral monoid with finite basis, then S S'* + M is MIP-

representable.

Proof

The "only if" is established by Theorem 2.1.1.

;- If S = S' + M, let A,, A2 , A3, and b be rational matrices and

vector such that

if x c S' - for some u, v ) 0, u integer, (2.1.18)
~ x + A u + A v - b,

1 2 3 vb
.'

:.-

and let A be an integral matrix such that

m e M - for some w > 0 integer (2.1.19)

S-,m= A 4w.

Then we have,

x E S - there are x1 and x2, u, v, w > 0 with u, w integer (2.1.20)

such that x - x1 + x2, A x + A2u + A3v " b, and

A4w 2

F,.°
N pA'.c ...
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which is an MIP-representation of S.

Q.E.D.

The next result is a technical corollary that produces a necessary

- condition for MIP-representability using recession directions.

Corollary 2.1.5

* n
Suppose S is HIP-representable and x £ Q is a vector for which

there exists some x e S and a sequence ik * = - with

"N.:' o *
.. x + 'kx e S for all. k-l,2, ... (2.1.21)

Then there is an a > 0, a e Q, with the property that for all
.-

x C S and all integers p ) 0,

x + pox c 5, and (2.1.22)

ox z n(integers).

Rmk: The conditions (2.1.21) are sometimes abbreviated by saying that x

is a local recession direction of S at x0.

Proof

k
.'. By Theorem 2.1.1, for each k-l,2,..., there exists x C S and

k * k k k
.m C cone(M) with x + Tkx = x + 'km , where Tkm  C H (so that

k* C cone(M)). Then note

a...

S ... . -a .
!i2i-'. .. , ,. .,. ..,. .,.,. . ,- , , .,.. .,, , , .,,, , .,,-,., .,., -,-. . .'. ..,- .. .-. .,: -'-*
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k k oIx*- I ( Ix -x X I/k € BIlk ,  (2.1.23)

where B is a bound independent of k.

Since ++- we have x £ clcone(M) =cone(), as cone(M) is

finitely generated 18]. Hence, for some a > 0, we have ox £ M, which

implies ax C Zn . Finally, from Theorem 2.1.1, x + pax E S whenever x £ S

and p • 0 is integer.

.Q.E.D.

Example 2.1.1

Let S Q Q be an NIP-representable set defined by S - {x C Z x

0 or x o 21. An NIP-representation of S is

x C S - there exist u1, u2 0 0, u1, u2 integer such that (2.1.24)

x - 2u 3u2  0.

* 02

with x = 1, x - 2, the hypotheses of Corollary 2.1.5 are met by letting

T k k. The conclusion also holds if a - 2. It is important tc note

that we cannot satisfy the corollary merely by making ox an integer.

E.G., o a I does not satisfy x + ox p c S for pal and x=0. Thus even

integer local recession directions need not be global recession

directions (i.e. need not satisfy (2.1.22)).

Suppose we are given representable sets S1 0..., St. Trivially,

their intersection is representable, but what conditions must hold for
b... their union (S U S U ... US ) to be representable? The next fixed-

1 2 t

.. . "~ -. ,. -.7.....': ', -..:.,_" ,"'*:. .* *,,



25
S.

charge example illustrates some complexities of this question.

Example 2.1.2

Let f be the fixed-charge function

f(x) (I x > 0 (2.1.25)

Note that epi(f) - SI U '2 where S1 and S2 are polyhedra (thus

representable) and defined by

S, ((z,x)jz 0 0, x = 0) (2.1.26)

S2  ((z,x)Iz * 1, x ;0).

However, S 1 U S2 is not representable. In fact, with (z , x ) - (0,1)

0 0and (z , x ° ) = (1,0) the hypotheses (2.1.21) of Corollary 2.1.5 hold for

S1  S2. But the conclusion (2.1.22) fails since (0,0) c epi(f) and

(0,0) + Y(0,1) - (0,Y) t epi(f) for any y > 0.4,"

In the above, a recession direction of S2 (namely (0,1)) fails to

be a global recession direction of S1 . However, this is not the relevant

feature of our. example, for the precise relative placement of S1 with

respect to S2 (and not merely recession directions) also makes a

difference. E.G., if S1 - {(-z,l) I z ) 1) then (0,1) is not a recession

direction of S' either, but S' U S2 is NIP-representable (exercise).

Because of the relative placement of S1, Sf and S2, we see that (0,1) is

4 o.
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not a global recession direction of S = S1 US 2 (hence S is not

representable), yet (0.1) is a recession direction of S' - SjU S2 . This

turns out to be the key feature for HIP-representability (see Theorem

*2.1.7 below).

The simple construction of the linear system (2.1.27) in our next

result will play an important role in our results to follow. This

construction derives from disjunctive methods [11, 171.

Lemma 2.1.6

If S ,..., S are bounded HIP-representable sets, then their
I t

union is HIP-representable.

Proof

£. By Corollary 2.1.2, it suffices to show that any union of

polytopes is HIP-representable, since each Si is a union of polytopes.

Let P. - {xIAx ) bi be non-empty polytopes for iil,...s. Ncte

that the boundedness property implies that A x ; 0 - x - 0. A

representation of P, u ... uP. is given by

;.ixii bi

x E x A x - b A. 0, X. # 0 for i1l,...,s (2.1.27)

. A. = I and X. integer for iil....s.i.'"i=I 1

Q.E.D.

Before presenting our main theorem, we must formally define our

use of recession directions. Our definition is restricted to discrete

4...
'S..

AV.
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recession vectors and from this point on, any mention of recession

directions implies discrete vectors. (Note this restriction has no

effect upon corollary 2.1.5).

An integer vector x is a discrete recession direction of a set S

if for all x e S and integers p ; 0, we have x + px E S. The set of all

-•" recession vectors is denoted rec(S).

Note that rec(S) is closed under addition, and integer multiples,

and 0 £ rec(S); thus rec(S) is an integer monoid. 18J

Lemma 2.1.6 is still valid if each polyhedron P. gives the very1

same continuous recession directions {xiA x ) 0), independent of i. In

this case, the P 0 need not be bounded. The same proof of lemma

2.1.6 justifies this claim. In particular, if each function fi is

polyhedral on a nonempty domain (dom(fi) + 0) and the recession

directions of all sets dom(f i) are the same for i E 1(i), then the

function

f(x) "minlfi(x)lx c dom(f.)) (2.1.28)

is MIP-representable.

We next state our main result on when the finite union

representable sets is representable.

Theorem 2.17

4Suppose that S,... St are MIP representable non-empty sets.

Then S a Sl U''" US t is MIP-representable if and only if every
°.5f .f
. 71

5-%.:
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discrete recession direction of every S. has a positive multiple which is

a discrete recession direction of S.

Proof

A recession direction x of Si * 0 satisfies the hypothesis of

Corollary 2.1.5. The conclusion of Corollary 2.1.5 must hold if S is

MIP-representable, hence our conclusion is necessary.

Next suppose our condition holds: we must show that the

i di
.1. corresponding S is HIP-representable. Let the sets Sa.+b and and

constants ai, b. > 0 be defined for S. as in Theorem 2.1.1. From (2.1.4)
1 1.

each integer monoid Mi is finitely generated and therefore MI has a set

kk n
of generators aij c R for j E 1(i), where I(i) is an index set. Each

a.. is a discrete recession direction for Si, and, from our condition,

o. .a.. 6 rec(S) for some a.. > 0. Since q.. E Q, we may take 0. c Z by
;J 1J. ... j

clearing denominators. Then a. H c 0.. is an integer and
j EIl(i) •

o.M. Crec(S). Furthermore, from Theorem 2.1.1 we haveIL I

. :S i =Sa.+b.o" oi~i  i,.,t (2.1.29)

In fact, we have

t t

L U.. i2

•.,. . ... . . . . . . . . . . . . . . - .... '. . ., .' ', .- ,. " : . .... _ -

:,~~.". . .. . _...','-, -,..'.._-. .,.'.:'." .. .. ,, . *
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U The containment (r) in (2.1.30) is trivial, since if x c S we have x l S.

for some il,...,r, and (2.1.29) holds. As to the cont:inment (D) in

0 * 0 t i * t
(2.1.30), let x = x + x , with x e U S and x C E a. .

•i-i 1 1 1 i=1l

Since each Si a Si, we have x C S. Since a.M. £-rec(S), we have

x l rec(S). Thus x c S.

iEach set S ab is a bounded set, and HIP-representable; thus by

Lemma 2.1.6, the union is representable. Since each H. is finitely

t
generated, so is Z o.M.. By applying the necessary condition of

i 1

corollary 2.1.4 to (2.1.30), S is MIP-representable.

Q.E.D.

From Theorem 2.1.7, we may determine representability of any

finite collection of representable sets using discrete recession

directions. Moreover, from the proof of Theorem 2.1.7, it is not

necessary that every discrete recession direction of S. have a positive

multiple that is in rec(S); we only need oi i Qrec(S) for a suitable

integer a. ; 1, where M. is the integer monoid of (2.1.4). One easily

proves that M r. rec(S.), but the converse is false, as our next example

shows. This example also illustrates the fact that M. depends not only
1

on S ,but a!so on a specific representation for S..

Example 2.1.3

A representation of the set S {xlx 0) is

JV
%. o

.- . , .
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x x1 I 2x 2  0 < x 2, x 0, x Z. (2.1.31)

Using (2.1.4) to determine k4, we find that

M Ix -2x1x 0, x z) (2.1.32)

1,~ ~ ~ ~2' bu2nti ersnainx-1~1.(oeeweee u

As x, 0 is forced in M. We know that a recession direction of S is

NIP-representation results in a x C rec(S), but x M , we will always

haesome a > 0, with ax c M4.) If '2' is replaced by '1' as a

coefficient in (2.1.31), the resulting M is indeed all of the recession

directions. An alternate form of Theorem 2.1.7 requires the cone of the

recession directions of the set S to be equal to the union of the cones

of recession directions of each S..

Corollary 2.1.8

Let S be HIP-representable and put S -S 1, U U~ St.

Then S is MIP-representable if and only if

t t
cone~rec(S)) *U cone(rec(S.)) Z cone(rec(S.)) (2.1.33)

In particular, if S is MIP-representable, the right-hand-side of (2.1.33)

is a cone.

Proof:

4.' By Theorem 2.1.7, S is MIP-representable if and only if
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rec(S) rconefrec(S)) for in..t.(2.1.34)

(Recall that the cone operation is only with respect to rational

multipliers).

Suppose S is representable and x E rec(S). Fix any x c S. Then

*.there is some Si such that x, 0 qx c Si for infinitely many q ,0. By

Corollary 2.1.5, we also have ax. c rec(Si) for at least one o > 0 and

i 1 .. t). Thus,

t

rec (S)~ U cone~rec(S.)1 (2.1.35)
i-1

Upon taking the cone generated by each set S. in (2.1.34) and applying

(2.1.35), we find

t

rec(S) U conefrec(S.) Q cone (rec (S). (2.1.36)

t
We now show that C L J cone{rec(S.)) is a cone. This will also

I1

t
demonstrate that C I coneirec(S.)).

In fact, if x, y E C then for certain j, and k, we have

x C cone{rec(S.) and y c cone{rec(S k)). By (2.1.39), x, y c

conefrec(S)), so x *y £ cone{rec(S)); i.e., for some a c Qwe have
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5 (x+y) e rec(S). By the first containment in (2.1.36), for some p we

have o(x~y) E cone lrec(S )) and hence x~y C cone ~rec(S )). As C is
p p

closed under addition (and clearly closed under positive multiples), C is

a cone.

By applying the cone operation rec(S) in (2.1.36) we obtain

(2.1.33) when S is representable.

Suppose (2.1.33) holds, it implies cone{rec(S.)) ccone{rec(s))

for i-,.,,in which case (2.1.34) follows, forcing S to be

representable.

Q.E.D.

Note that, as we saw in the fixed-charge example (Example 2.1.2),

it is not sufficient for the r.h.s. of (2.1.33) to be a cone. But if the

COT2[rec(s~) is independent of i..tthe result holds.

Corollary 2.1.9

If conelrec(S.)) is independent of i,.t and each S. is

representable, then S S1U ... U St is representable.

Proof:

N. Fix iz,.,. If x * coneirec(S), then [or all j-l,... ,t we

have x c cone(rec(S.) Hence, for any j there is some integer a, > 0

for which we have a x c rec(S.).

Define o a Rl o. Then OX E rec(Sj) for all jinl,...,t. Thus

Ox crecS),andthenecessary condition of theorem 2.1.7 is verified.

rec( ), nd .1 ~ *~. . .~.>*; *.. .:.. .. . Q.E.D.*
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We note, from example (2.1.2), that the sufficiency condition of

Corollary 2.1.9 is not necessary.

Proposition 2.1.10

p- If S is HIP-representable, then S is closed.

-* .4 Proof:

n n o o
Suppose x c S for n-1,2,... and x + x . With a Ix I + 1, S

is a bounded representable set. By Corollary 2.1.2, Sa is a finite union

of polytopes, and thus closed. Since x n S. for large n, x 0 S C S.

Q.E.D.

Example 2.1.4

The "fixed-benefit function" f given by

f(x) ( , x > 0, x (M

for either M finite or infinite, is not HIP-representable, since epi(f)

is not closed and Proposition 2.1.10 applies. (Note that

(-1, 1) E epi(f) for each n but (1,0) f epi(f)). (N.B. in the

"minimizing format" we have assumed, cost is minimized, so that a benefit

or profit shows up as a negative cost. If one switches to a maximizing

format, the difficulties will remain).

By the kind of reasoning as in the example, one easily establishes

the known result that a representable function is lower semicontinuous.

'p,"°
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Example 2.1.5

The "fixed-benefit function with minimum usage level" 6, is given

by

For M > 6 > 0 , and M finite, f(x) is MIP-representable. In fact, one

easily shows that epi(f) is the union of two polyhedra which have (1,0)

as their sole recession direction, and our earlier remarks apply. In

fact, by Theorem 2.2.1 and remarks to follow, f is representable using

only binary integer variables in a set-partitioning constraint.

(Actually, we can have M infinite and f will be representable; this is a

somewhat harder exercise).

We conclude this section with a necessary and sufficient condition

for a set S to be MIP-representable.

Theorem 2.1.11

A set S is MIP-representable if and only if S has the form

t
S U p.) + M (2.1.36)

for a finite set of polytopes P1 ,'.'' P and an integer monoid M with
- 0 •it

finite basis.

. .•

.-- .o . ..
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Proof:

Necessity follows from Corollary 2.1.4 and then Corollary 2.12.

t

Sufficiency follows by Corollary 2.1.4, since S' - U P. is MIP-
m i=1 1

representable (rec(P.) { {0) as each P. is a polytope, and e.g. Corollary

2.1.9 can be used).

Q.E.D.

Section 2: Bounded-integer Representability

In this section we explore Meyer's concept of bounded

representability. We define S as bounded HIP-representable if there are

- m s 0
ra:ional matrices A1 , A2, A3 and a vector b, plus a vector bound u such

thit

x e S there are u, v ) 0, u integer and u 4 u , and (2.2.1)

AIx A2u + A3v -b.

Note that S need not necessarily be bounded as a set, in order to be

bounded MIP-representable; e.g. we can have S = P U P where P and P
1 2 12

are unbounded polyhedra with rec(P I) I rec(P 2).

Theorem 2.2.1

S is bounded HIP-representable if and only if:

,i) S is a finite union of polyhedra; and also
*n

(ii) The following condition is satisfied for every vector x c Q

0 0 *
If there exists x c S and Tk + mwith x + TkX c S for k-1,2...,

_ -7 ... . . . . . ..
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then for all T 0 (r c Q) and all x e S, we have x * x c S.

Remark:

The condition in (ii) is, in words, that every local recession

direction of S is also a continuous global recession direction of S.

Proof:

First suppose S is bounded MIP-representable. Clearly, S is a

union of polyhedra.

When x *0 is such that there exists an x 0 S and *k + + with
0

x+Tkx C S for all k-1.2...., then there exist uk, vk 0 with uk

integer such that

A x k x + A 2 uk + A 3 vk -b, and uk 4 u 0for all k. (2.2.2)

Dividing both sides of (2.2.2) by 1 (rkx ,UkO V k) **+ -and using

compactness we find that there exists v 0 with

A x + Av O. (2.2.3)1 3

By rationality of A1, A3 , x ,we may assume v is rational. By a direct

computation, x + Tx c S whenever x c S and p 0.

For the converse, suppose that S is a finite union of nonempty

polyhedra S =P' U U. UP, and the condition holds. If we utilize the

*8*s

%.

**-. or

S.. * * .- -. * . ... .*-. . ~ *.*.* * ~ .. *.. . - . .- . . .
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notation Pi {x A x > bi), then (2.1.27) provides a bounded

representation of S.

In fact, let the set represented by (2.1.27) be denoted S'.

For i-1,...,s by putting A- - I and 1. 0 for j * i, x * 0 for j * i,

we see that Pi Q S'. Thus S S'. Next, let x E S', so that (2.1.27)

i
holds for certain x and ki. For some kl,...,s we have 1k  I and

A. - 0 for i $ k. Without loss of generality, k-1. If i * 1 and

Ii i 0 . 0
A x - b Xi  0, then x + Tx E Pi for all p ) 0 whenever x c Pf. By

' - i -I

the hypothesis (ii), x T rx £ S whenever x e S and r 0 0. We have x
1 2 1 2 x3

S; hence x + x 2S; hence x + x + X £ S; etc. In this manner, we

establish that x a Xx s S. Hence S' rS. We conclude that S = S', as

desired.

Q.E.D.

Theorem 2.2.1 excludes non-trivial integer monoids, as well as

'. many other unbounded representable sets, from being bounded MIP-

representable.

The proof of the "sufficiency" part of Theorem 2.2.1 reveals that,

when S is bounded HIP-representable, it has at least one representation

(2.1.27) in which all the integer variables ocurring are binary variables

that appear in the same set-partitioning constraint (i.e. . i  I 1).

i

*-1•

* . , *o. .
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Section 3: Sharpness of Representations

Another property of HIP-representations involves the "relaxation"

of the nonnegative integral variables u of (2.1.1) to nonnegative

rational values.

Our interest in this relaxation lies in the fact that, in branch-

and-bound algorithms, this relaxation is utilized in the subproblems

formed. Obviously, it is desirable for this relaxation to be "as

accurate as possible." We next prove that the relaxed representation

contains the convex hull of the original set S. This fact places a

substantial limitation on the accuracy of the relaxation.

Proposition 2.3.1

Whenever matrices A1 , A2 , A3 , and a vector b exist such that

2 3

x e S + there are u, v ) 0 with u integer and (2.3.1)

A.. AI x + A 2u + A 3v a b,

then the following holds:

x c cony(S) * there are u, v ) 0 such that (2.3.2)

A1x + A2u + A3v =b.

Proof:

x C conv(S) implies there exist X. ) 0 for i=],...,n such that

S n n'
x I X Ax. where Z A. I 1 and (2.3.3)

°"i'1 1 1 i-I 1
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x. c S for i=l,...,n.

By taking a summation of the following valid equalities,

A Ax I + A u lU +A Aiv A b , u integer
1 1A 1 2 1 13  1 1

A" Ax + Au +A =v A b , u integerI nn n n 3nn n n

we get,

n n n
AI( I A.x) + A ( Z X u) + A I Z Av*) X b

1 ili 2 il i i 3 iml i i

"'ml

which gives (2.3.2).

Q.E.D.

A HIP-representation of S (2.1.1) in which (2.3.2) is bi-A-

conditional (-) is called "sharp." A sharp representation is as accurate

as possible in its linear relaxation. By Proposition (2.1.1), this may

not be very accurate; but inappropriate HIP representations can be even

less accurate.

--* Example 2.3.1

The bounded fixed-charge function

%'

'-.., a-, _, -, : ",'., .', ;.,.,,:. ... , .".:., . . .... , -.-. ,. ." .:.:. '''" """/ ,""' . .. d .","
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(0 X x0
f(x) 1 0 <x 1C I

.-. ,x t [0 ,11

* - has an HIP representation of epi(f) as: "z ;-.x, 0 < x 1, z integer."
*2

The LP relaxation defines the function ex on [0,11, and the epigraph of• 2

-- x is larger than conv(epi(f)). Of course, the HIP represntation
2

"z > x, 0 4 x f 1, z integer" is sharp. As we shall see below, HIP

representations in common use are often sharp.

In lemma 2.1.6, we proved that union of polytopes is

representable. We now show that the corresponding representation

depicted by (2.1.27) is sharp.

- Proposition 2.3.2

If all the non-empty polyhedra P (iil,...,s) have the same

directions of recession, then (2.1.27) is a sharp representation of

4-.. P1  " ... uP 5 "

* Proof:
O.P-

Xo We omit the proof that (2.1.27) is a representation of

P1 U... UP. This proof is easily accomplished by, e.g., using our

argument below for the sharpness of the representation, and then noting

% that (when the X are all integer) we have X. = I below., i i

To establish sharpness, we need only show one direction of the bi-

conditional, and cite Proposition 2.3.1. (To establish a representation,

we need only show the same direction of the bi-conditional in (2.1.1), as

6-1'
._.,,,.-1

• ",' ... ...'.,..~~~.'..- ..'-..: . .. . ... , . .".".".'22 .". .:2 .2 .".,.-.-. : ".m . .,f& .
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the converse direction is trivial for (2.1.27). I.e., for the set S

defined in (2.1.27), one trivially has S = PIU " .

In (2.1.27) relax "A integer" to "A. c Q" for i-],...,..

Then if A. > 0, we have xi/A. - w. C P..

i . i 3. 1i 2We find that x - I A-w + I w where w i  P. if X. > 0 and wg i>O 2. AiO 2. 2
. 2.

is a recession direction of P. if X. - 0.

Without loss of generality, A1 > 0 (as ZAi - 1). Then X1wI +

I W - A(w I + I w IAd. Since each w is a recession direction of
, - =0 A-=0

" l i

P] also, w' - w + Z w l C P1. Thus, without loss of generality, we

-;? i

can assume x E i w . Hence x c conv(P 1 U ...U Ps).: .. '.A.>O

Q.E.D.

If the MIP-representation of S' is sharp in Corollary 2.1.4, the

construction gives a sharp representation of S. Thus sharp

representations always exist.

Note that as integer variables are arbitrated (set to zero or to

one) in a branch-and-bound algorithm, the representation (2.1.27) of the

union of bounded sets SIU "."U St . as obtained by following the idea of

the previous paragraph, does not correspond usually to subunions.

The juxtaposition of sharp representations for two set S and S

while a representation for S n S , is typically not sharp. E.g. if S
1 2

n
is a polyhedron and S2 = Z is the n-dimensional integers, the linear

@.2

,4'

4, ,
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relaxation of the juxtaposed representations gives the polyhedron

(which is typically not the convex span of the integer points in S,).

Thus the problem, of obtaining sharp representations of intersections of

representable sets, subsumes cutting-plane theory for linear integer

constraints, and is therefore not expected to have an easy solution

except for special cases.

S._-. It is sometimes convenient to state the "polyhedral" disjunctive

representation (2.1.27) in an alternative form, called the "extreme

point" form.

Let Pi * conv{x ij j E I(i)) + C, where the index set l(i)

k•-" depends on i-l,...,s and the polyhdedral cone C = cone{v k c K) is
independent of i. The "extreme point" representation of P.U ...U Ps

IS
is:

5
x A..x 1 , + Eav (2.3.4)

1i- jE(i) 3 K

".- .e I " Z A .

.,.. x jCI(i) IJ

~s

;:. ... i=I 1

1X. integer

A- k

. . . . . . . . . . . ... . ... . . . . . . . . . o.. . . . . . - - , ; , . . , . . . .
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Proposition 2.3.3

If all the non-empty polyhedra P.(i*1,...,s) have the same

directions of recession, then (2.3.4) is a sharp representation of

P U . UP.

Proof:

Let S' be the set defined by (2.3.4) in variables x c Rn, and let

S " P U °.. UPa.

.If x £ P., let 0.., O be such that Z X.. = 1 andIfxCi'e k jcI(i) 11
13 kx m). *x + E okv . Then by putting Xil and X.=O for j* i,

j£I(i) kE

(2.3.4) holds. Hence S' Pi" As i was arbitrary, S r S'.

If x c S', suppose that A. = I in (2.3.4). Then A 0 for j * i

' and so x - E ij X + I okV E Pi. Thus x c S', and so S = S.

jEl(i) kIK

We have established that S S', i.e. that (2.3.4) is a

representation of S.

To see that (2.3.4) is exact, only one direction of the bi-

'. conditional need be established (i.e. that if x solves the linear

*- .-*relaxation, then x E cony(S)).

Put I {i A. > O); we have I*. For i C I, define

Va A. .A.. Without loss of generality, A1 > 0. With /A= /A we

have:

x ijxi + k

- , , -

* -a

"" .i.. I i E j w i k.. . - , , . - . , - . % - . . .,K. . -

.4' -..'. .< --, , % .-_ L ' , .-- ' -' ? - ; : .; .. ...: ._ .. , ., ..--.. ...... .. .. . . . .. .
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= Z ).( + k

icI jaI(i) k k

..ij k) 1 L" x j

A ^ijx + v +z A
jcl(I) kCK i CI jCl(i) j

We also have , for icI, I X,. X )./A. - 1.
(1) jci(i) 2j 2. 1

(I) IxxJ k , x L j
Upon putting x z X -x + rv x ov ()

ijoi(i) Ij k K jEI(i) 1

i (i)
_ for icI and i*l, we easily prove that x £ PC S for iEI. Since

(i)
x = A )ix and Z Ai - 1, x E conv(S), as desired.:'"-"i I i ,I

". -. Q.E.D.

Note that A. can be removed in the linear relaxation of (2.3.4),

which becomes

S i
x E E ..x ovk (2.3.5)

i-l jcI(i) 'j kcK

i-l jCl(i) 1J

,..." A.., a )O0
ij k

Only (n+]) constraints appear in (2.3.5). The linear relaxation of

(2.1.27) contains many more constraints.

.%%

-
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The "common wisdom" regarding the Simplex Algorithm, in practical

applications, is that its running time is linear in the number of

constraints, and is affected by the number of variables only slightly.

Clearly, this practical observation is based on experience where the

number of variables is not exponential! For "arbitrary" polyhedra P.,

ij
'., the number of extreme points x (i.e. the size of I(i)) is exponential,

so the exact representation (2.3.4) is of no practical value.

However, a second observation from experience is that, when

representations are called for, the P. which arise are not "arbitrary" at

all, and have very few extreme points. Part of the reason for this is

that the P. thus occurring are of small dimension, but that is not the

entire reason. In any event, for the common representations there are

not many variables A.. and the (n+l) linear inequalities needed, assumes

primary importance. As we shall see in the next section, the most

efficient known linear relaxations of common experience - which have

often been arrived at without a general method or explicit mention of

the sharpness properties of (2.3.5) are instances of (2.3.5).

Section 4: Corollaries and Applications

4.1 Relation to Earlier Results. Section 2 of this chapter

contains a definition of bounded-MIP-representable sets that is closely

related to the definition used by Meyer 191. Specifically, a function f

-. is bounded-MIP-representable if and only if f has a rational MXI with

the bounded-integer property of (2.2.1). We will indicate in this

section that our Theorem 2.2.1 is a generalization of the five main
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theorems used by Meyer for the one-dimensional problem, for the case of

rational representability.

The following result is Theorem 2.2.1 of Meyer [9] for the

rational case.

Theorem 2.4.1

A function g(x), with a bounded non-empty effective domain

contained in R, is bounded MIP-representable if and only if:

(1) The effective domain is the union of a finite

number of closed and bounded intervals;

(2) g(x) is lower semi-continuous;

(3) g(x) is either identically- -or finite and

piecewise-linear (with a finite number of

segments) on its effective domain.

Proof:

A function g(x) with bounded domain satisfies the given conditions

if and only if epi(g) is a finite union of polyhedra each with a single,
ram. *

common recession direction, x * (0,1). By Theorem 2.2.1, a function

with bounded domain is bounded HIP-representable if and only if epi(g) is

a finite union of polyhedra with sole recession direction (0,1).

Q.E.D.

Meyer's Theorems 2.3.1 and 2.3.2 concerning semi-infinite domains

are proven in a similar manner. However, one and only one polyhedron PN

in the finite union epi(g) -P 1 U ... UP N will have two extreme
N

recession directions, one of which is x (0,I), and the other unique to

the "final" unbounded interval. This additional recession direction

% o%

,;. -;...'',..'..-'.-v-..',......"-."....-'... -.-... '"...."... ............ "........"......."..."......'."" " ." "" " " "S
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serves to restrict the functions thus representable. For example, the

conditions of Theorem 2.3.1 of Meyer involve an effective domain bounded

from below. The conditions are:

. (1) The effective domain is a closed interval;

(2) g(x) is lower semi-continuous and continuous from the right;

(3) g(x) is either identically - = or finite and piecewise-linear

on its effective domain;

(4) If g(x) is n~ot identically - m, then c cN where cN is the

slope of the "final" (infinite) interval and c. the slope of

of all other intervals.

As before, our Theorem 2.2.1 leads to the condition (3). The new

recession direction (1, cN) of PN must be a continuous reression

direction of epi(g) - PI U Pn' and the continuous nature of this

recession direction will make (1), (2), and (3) necessary. E.g., if g is

0
not lower-semicontinuous, there is x C R and 6 > 0 such that for a

sequence 6 M * 0 we have g(x0 ± 6 ) c g(x°) - 6. Since (x° T 6 g(x0 )iin
- 6) e epi(f) - PI U ... U PN and epi(g) is closed, we have

,' (x0 , g(x°) -6) c epi(g), which is impossible. For a second instance, if

g is not continuous from the right, by lower semi-continuity there exists

6 and 6 > 0 such that for a sequence 6 + 0 +, g(x ° + 6 ) g(x ° ) + 6.
I m

But as epi(g) has a recession direction (1, cN) we also have g(x0 + 6 ) (
N- m

O g(x° ) + cN 6_,,, and thus a contradiction. Our Theorem 2.2.1 can also be

1. directly applied to obtain the sufficiency of (1) - (4).

................... *.. , 4. . . . . . .

. . . . . . .. . . . . . . . . . . . . . . . . . . . .

. . . .. . . . . . . . . . . . . . . . . . . . . . .

.e.p ..'(p , / =" . - ' "d -"• ." - • ' " * * -.. " . . .. .. .T - .
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Meyers Theorem 2.3.2 allows the effective domain to be unbounded

. from the left. Only condition (4) from above is altered to read:

(4) If g(x) is not identically - ,% then c. c. for

i-2,...,n, where cI is the slope of the "initial (unbounded

from below) interval.

- 
* Identical arguments from Theorem 2.2.1 also establish this result.

Theorem 2.4.1 of 19], involving a domain which is unbounded in both

directions, amounts to juxtaposing the two cases of unbounded domains

given above.

One advantage of our approach via recession directions, is that it

indicates the generalization of these results to functions of more than

one variable; and the statement of the result is succinct, rather than

involving a list of conditions.

4.2 Application to Other Models. In this section we give en

instance in which the inequality description of a function (2.1.27),

which results in a disjunctive MIP-representation, becomes Beale's

representation of a certain model studied in [2, p. 2161 (when an extreme

point formulation (2.3.4) of the linear inequality system is employed).

Beale's representation for an approximation of a general function

g(x,y) = xf(y), where f(y) is nonlinear, is equivalent to (see 131):

2 s
z I r . f(i.) (2.4.1)i,-ni j1 2 2. 3

2 s
Vi, z .. =: : - ' .:i I j 1 1 • 3

:'-5.'-)"" ~~~~~~~~~~~...... ....................................-.-... .*...........-.....----. -
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X jml (X1I lj +2 A2j

2 a

i-I j-l -

A.. + X2  ~A for jIl,..,
2j *j

where z AmnI and A. binary,

jml Jj

where X 3miX and X2 X axrepresent the bounds on x and Y. represent-1 -mm -2 -max

the "grid points" fcr a certain approximation to f(y) over some

interval.

Our linear inequality method of representing the same function

g(x,,y) - xf(y) proceeds in two steps. First, we isolate the following

function as a "piecewise-linear" approximation of g:

g(x,y) - xf(Y) if y X, and Xmin 4x < sax (2.4.2)

xf(Y ) if y X and X mn4x I( a

Next note that, for each j*1,...,s the set

- {(Z,X,Y)Iz> xf(Y), mi xCXmiy-Y is a polyhedron withj- Xi mxy X
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(1,0) as its sole recession direction, and that epi(g) P U...U Ps

Using (2.1.27) to represent epi(g), we obtain:

z XA.z.,.....j.l J

x E X- x j
j-l.1 J3

y A.x.
j=1 J-J

.'-.

-,j . -max j

Z A. - 1 , A. integer.
j-i .3 .

.,,'4 An extreme point representation of (2.4.2) alters expression (2.4.2) as

: follows, Since the . are binary variables, and E . , there are

, .continuous variables Alj and A2j with kam 3 +A adx A1  +

"':A We have :

'4..

.'p"

;,.................................. . .,,,.... . ,. ... .... .......-. :.:'.,7 ... ,.:-:'-',
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2s
X I E )X. X., where X, X .; (2.4.3)
jai jal in;1 -1 -m 2 -max;

J lj 2j j J.

2 s

jul ja1 i

jai Ij 2j~ -J

s 2
z z f(.

Sjai xi1 2 -3

which is identical to (2.4.1). An important note for applications is

that the specific representation used by Beale contains more variables,

but fewer constraints than the linear inequality formulation. Thus for

large problems, Beale's technique is better suited for L.P. pivoting. As

a general rule, we can always use the extreme point representation of the

polyhedra P. in (2.1.27) in place of the linear inequality

representation, if that is advantageous.

2.4.3. Sharpness in Separable Programming, an Application

In this section we treat the representation of a separable

n
Vfunction g(x) * I g.(x.), by approximating each g.(x) by a piecewise-
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linear function g(xi). Clearly, our definition of sharpness for each

approxim:tion g (see 2.3.2) and text) is identical to

-L
epi(g il = conv{epi(gi)), (2.4.4)

4-

where gi is the function derived from the LP relaxation of the HIP-

reprtsentation of gi(x).

We next show that an approximation of gi(x), defined on a bounded

interval T, may be constructed with a finite union of polytopes, which is

MIP-representable. We then adapt the disjunctive HIP-representation used

earlier in this thesis (see 2.1.27) and (2.3.4).

Proposition 2.4.2

Let g(t) be a piecewise linear function of one variable t on a

closed, bounded interval T. Suppose that g(t) is linear on each interval

[ic 1 , c_ (kIl,...,s), where the intervals are disjoint except for end

points, and have union T. For each k, define the polyhedron

= R2

k {zt) C R It E [cj c z g(t)). (2.4.5)

Then (2.1.27) and (2.3.4) both define a sharp representation of g.

Proof:

This follows from Proposition 2.3.3, since (1,0) is the ccmmon and

only direction of recession of the polyhedra P.
k*

4.

., . • - . . ... o.' .
• ~~~~~. ....... .. . .. ..... o• ... ° . .o....o.•.• .••. . -oO. ... .o.....• . os. ..... o, %
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Q.E.D.

We illustrate the function g in Proposition 2.4.2 in fig. 2.1.

Here a. is the slope of g(t) within the jth interval, La Ic 1 , cj]i

and b. = g(c.), the end point values of g(t). Using the matrix notation.1 J

from lena 2.1.6, we describe a polyhedral union description of g(t) as:

.j-l j  tj r c. i. jl,...,s (2.4.8).1 J J

X. 0 0, Z 1. A 1; all X. integers;

'"j=I .1 .j

Z t. t

and enter z = E (A b. ajt.) in the minimizing criterion function
j-.. 1-J

wherever g(t) is needed.

We next shall adapt the "extreme point" description to our

piecewise-linear example (fig. 2.4.1) to develop an MIP-representation

" that also remains "sharp" after binary variables are arbitrated.

The extreme points of Pi in (2.4.5) are (bi I , c i-) and (bi, c.).

The sole extreme ray (1,0) can be omitted in (2.3.4), since a minimum

value of z is sought. Then the linear relaxation (2.3.5) of (2.3.4)

becomes:

,.,....,.:....,.,..... ... .,....,. ,... .-... ... .. . .. ,.. . .•...... * • . " , , ,
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g(t)

1 2 3 Ps

bb

a2  b
a 3  a

a5 b S1s

b0
2

L L
2  L3
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C0  C1  C2  C3  C 1  a ,

Figure 2.1, Function (t)
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s-1 2
x r r A i C + Xi C )~ (2.4.9)

jai ja1iii 2il

x-I 2
I- E E A. 81 *sol .
i-i ju1 13 .

s-i 2
where z E I (X b + X b )is entered in the criteron function.

i-i j-1 ii i i2 i+l

Actually, a small simplification enters in this case, if we set

el Al 0 =A and e. A. i-, A ilif 1 < i < s. Then (2.4.9)

becomes:

x OC

jiI 1 2

S
and z I O.b. is entered in the criterion function. This

jal

simplification occurs because the right most point of one interval is

also the leftmost point of the next interval. If there were a "gap" in

the domain, our method would still work, but the simplification would

not.

The system (2.4.10) is the most compact relaxation of a

~ ... formulation that is known for separable programming, and is given in (21.
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It involves oniy two constraints, and a number of variables e equal to

U the number of intervals.

From Proposition 2.3.3, the system (2.4.10) is exactly a

formulation for g . Thus if g is convex (i.e. has convex epigraph), so

that g g, the system (2.4.10) is a formulation of g, as noted in [21.

Whng isntcne,[)recommends a pivot rule which cannot always be

used to optimality. Alternatively, one can still solve (2.4.10) and

gather what information is possible via this "best possible" linear

relaxation.

2.4.4 New Representations. At this time, the best of the existing

representations for functions of one variable have nice properties. A

primary applications area for our techniques is to functions of several

variables.

We focus on a useful function of two variables below, and use

rectangular domains. This use of rectangular domains can have

limitations, depending on the application, if many variables are to be

<S accommodated (due to the growth in extreme points). However, that

difficulty need not arise if simplicial domains can be profitably used.

4 our example to follow is intended simply to illustrate our approach.

If activity i is employed, a fixed charge f. is incurred (i-1 or

2). If both are employed. a fixed charge f is incurred, and f need notb b-

be the sum f I f 2 * Specifically, we are to model the fixed charge

function:
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0, ifx -X 0;

2' 1 2
f oOif x, 0, 0<x 14M
2"1 2 2

'" f~b' Vf0<x I 0 < x2 •M 2 ;

The bounds M and M2 will be necessary, as they were for the one-

1 2

dimensional fixed-charge problem. As we chose to avoid unbounded integer

variables, we seek a bounded integer representation.

- It can be shown that, for a representation to exist for (2.4.11),

we need these conditions satisfied:

0 C fl' 0 f max{f1 f • fb (2.4.12)

In fact, if (2.4.12) fails epi(g) is not closed (see Proposition 1.10).

The conditions "0 ' f." simply require that we have a true fixed-charged

(rather than fixed-benefit) problem. Also, "max{f1 , r . fb can always

be arranged. (If it at first appears that f2 > fb' always set up for

both activities when you set-up for activity two, and use f2 
= fb)

When (2.4.12) holds, we have

epi(g) P U P U P2 U P3  (2.4.13)

where PO {(zOO) z 0), P1 {(zx O) z f and 0 f x c . ),
0 1 11 1 1

P {(zO.x2) j z ) f2 , 0 C 2  42} , and P3  ((ZXl3x2) I z ; f

0 x M 1 0 4 x2 4 M2

We shall investigate the linear relaxation (2.3.5); and as above,

92
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since a m~inimum value of z is sought we can omit the coummon recession

direction (1,0,0).

We obtain the following for (2.3.5):

x a (A + A +A )M(..4
2 22 32 34 1

2 2 4
A + + E X + EA m

01 ji1j ji2j jai 3j

all A.. )0

where z (XC + A )f + (A + X~ )f + ( + A + A + A )f is to
11 12 1 21 22 2 31 32 33 34 b

be put into the objective function.

To obtain (2.4.14), the following list of extreme points were

* .used, with multipliers A.. ;o0 as indicated:

d1

Z.:
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A (0,0,0) P
010

All (f1,0,O)

X12  (f 1 ,M10)

A2 1 (f2 ,0,O)"" '"P2

22 f 2 '0,M 2 )

A f 00
31 " 31

I.. A32  (fb,M ,0) P3

A33  (f b,0 )

34 b 2

There are substantial simplifications in (2.4.14). For example, positive

values of A A, or A deteriorate (raise) the value of x, yet they
1.. 21 '31

do not occur in the expressions for xI or x2; and also AOI occurs nowhere

except in the last constraint. Thus we may take All = X2 1 ' X3 1 ' 0.

Moreover, if X32 > 0, by decreasing A3 2 and increasing A12amount, we

retain feasibility and can only decrease z (since fl r fb by (2.4.12).

Thus we may take A3 2  0. A similar argument allows the simplification

A 0 0. We have thus eliminated five of the nine variables in (2.4.14),
33

and A 01 can eliminated in favor of an inequality convexity constraint.

Only three variables remain: A A and A All this depends ony

on the necessary conditions (2.4.12). We obtain:

,°S%"
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:X ( (12 + A34 )M1  (2.4.14)

2 2 (A 22 + )M

A + A + a I , l A. 0.12 22 34

where z A f + A f + A f is entered in the objective function.

whr 12  1 22 2 34 b

It can be shown, in the common instance fb C f + f that we need

not have both A1 2 and A2 2 positive when z is minimized. By algebraic

substitution, the case X1 2 ' 0 is equivalent to x2 / 2 ) x1 /M, while the

case A = 0 is equivalent to x /M2  x ./M The optimal value z(x ,X2)
22 2 2 1 1* 1 2

of z in the minimum can be computed to be

(f-f2)x /M + f x /M if x M ;0 Xl/M (2.4.15)

b2 1 1 2 2 2' 2 2 1 1

11 2

fU £X/M + (Ib f1)X2/M2 i f x2 2 11 X /M .

:.. -- As we are assuming f b e. f1 +  f 2 to obtain (2.4.15), we see that always

z(X1 ,X2) fx/M1 + f2x2 /M2, with equality holding if fb f I + f2"

Note that flXl/M + f x /M is the sum of the individual linear11 1 22 2

relaxations when joint effects are ignored. In the case f, f = f b f

that one set-up pays for both activities, (2.4.15) gives

z(xlx 2 f(max{x /M, x2 /M )) (2.4.16)

which is a formula that can be used directly to replace the system

(4.14). (This also can be done with (2.4.15.)

• .. . .. . .
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In the less usual case f > f + f that a special "additionalUb 1 2
penalty" is levied when both activities are undertaken, we note that

* - -

z(xx 2) f x /M + f2x2 /2 whenever (2.4.17)

is 2 1, 1 2
x... -" X/M I x 2/M 2  1 1,

..'..x I, x2  ) 0

Indeed, AI2  x /Mi. A2 2 - x2 I 2 A 0 solves (2.4.14) and gives this

12 1 22 22' 34

." value, while any increase in A produces a larger value of z (consider

A 134 as a non-basic variable, and note that its reduced cost is fb - f 1

> ). If xl/M 1 + x2 /M2 > 1, we must have 34 > 0 in (2.4.14). Then

from fb > f + f2 one can show that A12 +  22 +  34 1 Upon solving

the resulting three linear equations for z we obtain:

z(xl$X 2) =(fl 1 f2 - fb)  (fb - f2 )x /M I (f b- f )x 2/M2 (2.4.18)

whenever xI /MI + x2/M 2 > 1 ; xlx 2, P 0

4..-.
u
.

For the expression (2.4.18), it can be shown that z(x1 ,x ) > f x /M +

f 2 x 2 /M2 in the region described, i.e. the relaxation value is higher than

the sum of the independent values (as it should be).

The algebraic simplifications performed mechanically above only

amount to removing extreme points of a P. which is no longer extreme in

K - cony (P0 UP 1 UP 2 UP 3 ) " In an easily visualized formulation

(2.4.11) like the present, geometric intuition can speed the process.

*0 Since K is a polyhedron, the linear relaxation z(x ,x ) of g is
102

the maximum of a finite set of linear forms. Here, more than two forms
...

• t.. -. . ... . .. -v .-- . -". -. ,'. .--- ..-4'- . x .:.,. - -- '": :
,-" .--.-.v -.v '.. .-.-, .--''.-'-.. - .- . .. ....-
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was not needed. The expressions for z(xx 2 ) obtained in this way can be

1'
used to replace the syst-m (2.4.14), if that is desired. The linear

forms involve are exhibited above; we leave the details to the reader,

and note only that this process, too, is part of a general procedure.

o-.. -

-J.

-I-
.. . . . . . . . .

b. . . . . ...- .L
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CHAPTER III

EXPERIMENTAL RESULTS ON THE NEW TECHNIQUES
FOR INTEGER PROGRAMMING FORMULATIONS

Section 1: Introduction

A widely accepted view in integer programming research is that

progress, in utilizing (mixed-) integer formulations to solve real-world

.7 problems, will rely primarily on algorithm advances (for general and

special structures) and clever coding tricks. In this view, we are

perceived as already knowing how to represent a real-world problem with

integer variables; those simple "formulation techniques" appear early in

the subject and by now are widespread in the master's level and even

undergraduate level textbooks. (see e.g. 17]) However, since in the

1970's, the experience of practitioners indicates that some major issues

of formulation have been overlooked (see e.g. (81, 117), 123], [241,

[25]).

In this chapter, we are going to provide furthur experimental

results, which favor certain new integer formulations that we introduced

in chapter 11. Our formulations are not ad hoc "practitioners tricks,"

but derive from a systematic study of modelling. These formulations are

either directly derived from, or motivated by, developments in the

"disjunctive methods," particularly as in (21 and 1141 (see 113] for a

survey of these methods). R. R. Meyer [191, 12U1, [21], 1221 and
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T. Ibaraki 112] initiated the systematic study of "integer modellings";

* - see also 115].

We caution that our experimental results are preliminary: the

-~ - problems studied are "small" by industrial standards. Nevertheless, the

advantage of the newer formulations does appear to increase with problemn

size. Also the initial linear program solved is typically much tighter

than in standard formulations, a fact which is code-independent. We use

the Land and Powell code because of its accessibility and excellent

documentation. We also run problems using C. H. Martin's BANDBX code,

and CDC's APEX IV mixed-integer code.

We do not contend that the newer formulations will necessarily be

better, in terms of CPU3 time, than those previous. They often are not,

for example, on tiny problems (fewer than 10 binary variables).

Moreover, of the potentially limitless number of different formulations

from the real world, we study only a few common ones. Nevertheless, the

new modelling techniques are quite "automatic," easy to learn and to

apply (either by hand, or in a "wrap-around" of a standard MIP code), and

seem to markedly improve performance in some common problems.

The modelling techniques we have developed have these properties:

(1) They are automatic, and do not depend on an ad hoc analysis of the

0 problem to be modelled; (2) The linear relaxation is optimal for the set

* modelled; (3) Under mild assumptions, variable arbitration in branch-and-

bound leads to a modelling of our type, so that reformulations are nct

S needed in lower nodes of the search tree.

4,.
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For related work on problem formulation, see 14), [B], 11], [23],

* [24], [25].

Here is the plan of this chapter.

* in Section 2, we quickly review a few basic concepts and results

from chapter 11, and also introduce the idea of "modelling linkage." We

explain the "sharpness" concept, which is part of what differentiates our

modellings from those previous. This is sufficient for the reader to go

c~n to the description of our experiments, and to our experimental

results. In Appendix A, we provide (what is essentially) a tutorial on

those results and techniques from chapter II which are relevant here.

The appendix is optional reading.

Section 3 presents an experiment on sharpness, which we test in

* the setting of a multi-divisional firm (like that considered by Dantzig

- . and Wolfe [6]) where, moreover, each division has a choice of

* technologies at its disposal. This variant of "multiple choice

constraints"~ is tried, since some hand calculations with these kinds of

constraints indicate a dramatic lack of sharpness, in the formulations

given in most articles and commnon textbooks. Our experiment confirms a

dramatic advantage for the newer formulations.

Section 4 presents an experiment on modelling linkage, which we

test in the setting of separable concave functions with multiple fixed-

charges. our experimentation here is more limited, but it confirms a

* definite, but smaller, advantage of the newer modellings.

Setion 3.2:Wate Exeriments Test

We begin this section with a short summary of some theoretical

results.
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n

A set S of rationals in Q is called bounded-MIP-representable, if

there are rational matrices Al, A2, A3 and a rational vector b, as well

as a bound B, such that:

x E S - there are u, v > 0, with u integer (3.2.1)

and Ilull B, such that

A Ix + A2u + A3v - b

Functions f which occur only in a minimization objective are represented

via their epigraph epi(f) - {(z,x) I z - f(x)); their domains may be a

n
general subset of Q . This will then coincide with Meyer's definition

of function representability [18] in rationals. (Caution: Functions

occuring otherwise may require representation by graphs or hypergraphs).

A more general concept of HIP representability is given in chapter

II but we do not use it here. Moreover, unlike some previous work (e.g.

[19]), all our representations are in the rational field, and are of sets

of rationals.

Here is a general result chapter II, which characterizes bounded-

MIP-representability.

Theorem: The set S r Q is bounded-HIP-representable, if and only if,

both these conditions hold:

a) S is a finite union of polyhedra;

0
n

) henever x c S and y E Q are such that

".9

,-2.

....
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x * ny e S for all n-1,2,3, ... , then for

every x C S and all A ) 0 we have x + Xy c S.

By the Theorem, any finite union of (rational) polytopes (bounded

polyhedra) is bounded-NIP-representable, since always y=0 is forced when

the hypothesis of 0) holds, so that 8) is vacuous. The Theorem also

shows, that the unbounded fixed-charge problem is not bounded-MIP-

representable. (Actually, Meyer earlier showed it is not representable

at all). The function for this charge is

0 x -0;

" f(x) = (3.2.2)

with c > 0. We have epi(f) P UP with P = ((z,x) x=O, z . 0),
1 29

" = (z,x) x > 0, z > c), so that condition a) of the Theorem holds.

0 0
However, with (z , x°) = (c,0), y (0,I), and (z,x) = (0,0), we find

that condition B) fails. This explains why we need an upper bound on x

- to get a representation for fixed-charges.

The Theorem "almost" says, but does not actually say, that when S is

written as a union of polyhedra S - PlU P2U ...U Pt then all Pi have

the same recession directions. For example, if t-2, P = ((X, x

0 e x 4 1, 0 4 x2  1), P2 a {(x x2 ) x ;k1, 0 4 x2  2,), then by

the Theorem S - P U P2 is representable, even though P1 has no recession

directions and P2 has (1,0) as a recession direction. (The exact

"placement" of P relative to P2 matters; for example, if
12



69

P {(Xl9X 2 ) -- 1 ( 0, ,0 x2 C 1), then S P I U P2 is not

bounded-MIP-representable). However, if C is the sum of the recession

cones of the P. for a bounded-MIP representable set, note that S = (P +

C) ... (Pt + C). Hence, "without loss of generality," the P. P. +11 1

C can be taken to have the same recession directions.

Note that some important sets are not bounded-MIP-representable

(indeed, not representable at all), as for example the "complementarity

set":

*-. ''"" f(xl,x2) 
=  (xl ,x2) 0 xl*x 2 = 0) P U P.2 where

P1 V{x x 2 1 22
PI a 1(X1, x2 0 1 x1, 0) and P2 ((xx2) > 0 1 x2  0).

(One easily verifies that 0) fails). Meyer and Thakker have introduced

other representability concepts for such a set 122], the concept of

@"polyhedral union" representability, which will not concern us here.

*Our focus in this chapter is not on the issue of the existence of

representations, but on certain qualities they may have, when they exist.

The first significant quality is that of "sharpness."

A specific bounded modelling Al, A2 , A3, b for a set S is called

sharp, if, in addition to (3.2.1):

x c clconv(S) - there are u, v > 0, (3.2.3)

" ull r B, with

• ...':
A x Au4+ A v b.

1 2 3

In (3.2.3), the integrality condition is dropped ("relaxed") on u, and

o..

A,.:4

~~~~~~~~~~~~~~~~~~~.. ,.,. .. . . . .... . .-......... .. ...... . ... .. ..... . . ... k'"" .. .. L. .
-,-, A..,.. % , A... . . -. ,.,. o .. .. , a , a. _._.. .,,, ,a. -. , 

" ' , #
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elconv(S) is the closure of the convex span of S. In chapter II, it is

shown (and it is an easy result) that, whenever (3.2.1) holds, then

X E clconv(S) - there are u, v > 0, 1jull , B, (3.2.4)

with

A x + A 2u + A 3v b.

Therefore, a modelling is exactly sharp if its linear relaxation is as

tright" (i.e. small) as possible.

In branch-and-bound codes, the algorithm uses the linear

relaxation of a mixed integer program, both for fathoming and for guiding

the search strategy. Therefore one might heuristically conclude that

sharp formulations should be superior to nonsharp ones. This is not an

exact deduction, since sharp modellings may contain a different (often,

but not always, larger) number of variables and constraints. Moreover,

so many heuristic devices are used in branch-and-bound, which are not (in

some sense) "monotone" with the size of the linear relaxation, that an

exact analysis seems very difficult. However, the heuristic principle is

clear enough. Moreover, we discover that many of the "textbook

4- formulations" are not sharp, so an experiment seems in order.

The concept of "sharpness" is introduced by Meyer 1211 for

* functions, with the larger descriptor, "linear relaxation optimal." In

chapter II, we provide sharp formulations for all bounded-MIP-
.. representable (really, all HIP-representable) sets, which also retain

sharpness in many (but not all) situations as the variables are
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arbitrated by a branch-and-bound code. The second property, which one

might call "hereditary sharpness," is important when one cannot intervene

'.-" in the code at each node, to "touch up" the representation. Our

formulations are presented, with worked examples, in Appendix A.

We now wish to introduce the newer concept, of "modelling linkage."

Representations are not used by themselves, but as parts of larger

programs. For example, we may have a program:

min: cx (3.2.5)

subject to: Ax = b, x > 0

x. integer, jcJ

x LS

or

xcS 2

When both S 1 and S 2 are bounded-MIP-representable, and in fact

x c S. - there are u , v ) 0 with u integer, (3.2.6)

Iluill mi., and

1 2 u+A3

O then we can solve (2.5) via this mixed-integer program:

min: cx (3.2.7)

subject to: Ax *b

I
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5- o

Ax A 2 u + A3v - b
2 22 22 2

Aix + A2u + A3v - b

1 2 1 2
X, U, U ,V , V )0

1 2
u , u integer

x. integer, j c J.

Note that the constraints of (3.2.7) actually give a bounded-MIP-

represention of the set

S { (x > 0 n Ax - b, x C SI U S2 0 x. integer for j c 31.

However, it is important to realize that this may fail to be a sharp

presentation of S, even if one begins with sharp representations of S

and S In particular, the representation of S obtained by our methods

(which give sharp representations) may, and often do, differ from the

constraints of (3.2.7).

" . Modelling linkage refers to the way that the representations of

.A smaller side conditions (like x c S.) are made independently, and then

simply "attached" or "linked into" the whole program (3.2.5). By

sharpness considerations, one ideally would like to represent all of a

program at once (the set S in the example above), rather than by "pieces"

which are attached on. However, generally the size of "large chunk"

formulations can grow multiplicatively, so some compromise is often

needed. (However, see later for an instance where the "large chunk"

0 formulation is smaller.)

The issue of modelling linkage can be a very subtle one, as, for

example, a representation of S; (x C S I x. integer for j c J) can be

.~~~ . . . . . ... . . .
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superior to one of S alone. It is best clarified in a more general

setting (similar to that of the co-propositions of 114)). Modelling

linkage is quite clearly related to the issue of sharpness, but it goes

further, in that it concerns the setting in which sharpness is sought.

In addition to the "sharpness" aspect of modelling linkage, there

is a second subtlety subsumed in this concept, which we call "variable

co-ordintion." For example, if a piecewise-linear function of one

variable, which also has fixed-charges, is to be modelled in two separate

sections -one for the piecewise-linear part, and one for the fixed

charges - the separate modelling may not take explicit care to insure

that the same interval of function value is being considered in one part

as in the other.

Particularly, after some integer variables controlling segments of

the function have been arbitrated to specific binary values, it is quite

possible that in some subproblems of the branch-and-bound tree, different

segments are being considered in the separate modellings. This fact need

not show up as a simple inconsistency of the linear program for that

subproblem, but it can greatly multiply (unnecessarily) the size of the

branch-and-bound tree. We say in such cases that the segment variables

are "unco-ordinated" and such a lack of co-ordination would not occur in

a simultaneous modelling of both aspects of the function together.

Incidentally, in some cases variable co-ordination can be achieved

among the separate parts of the modelling, without going to our

techniques; but this phenomenon of co-ordination seems not to have been

discussed previously. Variable co-ordination refers primarily to the

I2

. . . . . . . . . . ..,

,'. .. . .. . .. . . . . . . . . . . . .." . . j .',"% . . '- ., *D. - -
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a hereditary properties of modellings (i.e. how they behave as integer

variables are arbitrated).

For a preliminary test on modelling linkage, and hence also

variable co-ordination, we choose a problem in separable programmring of

the type discussed above. Each objective function involves a single

variable, and is piecewise-linear, except for "fixed-charges" (or, in the

U economist's terminology, "set-up charges" - as all our costs are variable

prior to the decision made in connection with the model).

We use four formulations: the first two are "separate"

formulations, one for the fixed charges and one for the piecewise-linear

segments , which are separately attached to the main program. They are

similar to formulations found in textbooks. The third formulation is our

sharp formulation for the entire function (done at one modelling). The

fourth formulation is of the "separate" variety, and as each separate

part comes from our techniques, each separate part is both sharp and

hereditarily sharp. (One of the textbook-like formulations is not sharp,

although it did quite well; the second is not hereditarily sharp.)

As it turns out, the third formulation, which involves the entire

function, also requires half as many binary variables - an example of how

a smaller program can sometimes have a tighter linear relaxation! By the

usual rule of thumb, the third formulation ought to run faster, and its

0 improved sharpness should increase the effect. However, we run the

experiment to be certain, and it does confirm our expectations.

Incidentally, the data of the type used in our second experiment

* is such, that we believe our favorable results are due to the variable
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co-ordination aspect of the simultaneous modelling, and not its sharpness

property.

Section 3.3: The Experiment for Multiple Choice Constraints

We begin this section by describing a set of problems that will

allow us to empirically compare, our modelling for either/or constraints

with the standard textbook modelling. In our formulation, these mixed

integer programs have binary integer variables in special ordered sets,

where for each set of binary variables at most one is non-zero. However,

we do not incorporate special-ordered set branching.

The scenario for the test problems involves a corporation which has

several divisions producing different end products. Each division has

the choice of different -echnologies in producing these products, and the

products produced by individual divisions are different. The technology

chosen affects the total output and product mix of each division. Since

the corporation must satisfy financial and capacity restriction

considerations which apply to all products produced, its goal is to

simultaneously select the desired technology for each division while

optimizing corporate profits.

The following notation is used in the problem:

ND * number of Divisions.

NT(i) number of Technologies possible for Division 1.

0 NP(i) = number of Products produced by Division i.

NC(ij) - number of constraints in Division i when using

Technology j.

0

.. . .. . .. . ... . .. . ................ .. '..'...".....-.-............'.'" " ,- . .. '"" ''..., -
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x. vector of products produced in Division i,

of dimension NP(i)

.i contribution of Division i's products to the overall

corporate profit (a vector with dimension equal

to x.)

A. = a matrix of dimension (CCx NP(i)) which is the
.

effect of Division i's output in constraints.

CC = number of common constraints which tie all Divisions

together.

D.. A matrix of dimension (NC(i,j) x NP(i)) which
A -J

represents the technology of Division i when

Technology j is selected.

r. = The right-hand-side constraining Division i, whenrij

Technology j is chosen.

All matrices A., D. are nonnegative and with no zero columns. The
1. 1

general problem is depicted below:

T TT
NIP) max: c x + Cx + *+ cT
(M1P1 ,jj 2 2 -ND ND

ST:

(Common
Constraint) A x A x N + A x r b

1~1 2_2 ND-ND

(Division 1)

D x (r or D x (r or
.,I 1 1,1 1,2_1 -1,2

D x r
1,NT(1)Xl .jNT(1)

. a

....................... . .,'._-.,•- . .......... .••.. .. . -,V-m'.,,t a.'-J
. .' .I '
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(Division 2)

D2,IX 2  r2 ,1 or D2,2 r2 ,2  or ...

... D2,NT(2)X2 4 r2,NT(2)

(Division ND)

D x 'r or D x •r
ND,IND _ND,1 ND,2 ND ND,2 or ...

DNDNT(ND)_ND ' _ND,NT(ND)

x. ) 0 for all i-1, ND

We use two MIP Representations to model this problem. The first is

a standard procedure found in numerous sources, such as Eppen-Gould [7].

The second representation is from chapter 11 on modelling a finite union

of polyhedra.

Assuming the maximum production capacity of each division is finite

results in each constraint set being a bounded polyhedron, or polytope.

In order to model the problem using the standard method, the upper bound

vector x. for variable x. must be known, so that one can calculate upper

bounds u.. for each constraint (this procedure is explained in detail

later on). For now we define uij as the value of the r.h.s. of each

constraint of Division i, and Technology j, when all products of Division

i are producing at this peak value (x)

,i • Di.jx i =ui j .

, Thus the standard representation (MIPS) is as follows.

.... o.., *- - - .. ... . .. . -. - .. *. t f a . . . . ;OrI / ,C ,C 'm L 
. ~ ' a

. . .
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}- _+T T T
(MIPS) max: cx 1  + x2 T " T T

-- NDN

V." ST:

(Common) A x + A x + A x c b
11 2 2 NDND

(Division 1)

D x + - r )z u

D x +(u - )z u
1,2.1 (1,2 11J,2 1,2 • U,2

DlNT D1  ) x1  (u - r ) z
D- 1,NT(Ix + u,NT(1) r,NTC1) z1,NT(l) UjNT(1)

(S.O.S Constraint) z1 1  zl,2 + + ZlT(l) 1

(Division ND)

D x + (u -r )z 4 u
ND,1,ND ,ND,1 _ND,l ND,l ,.ND,1

.,

DND,2,JD + (ND,2 - ,ND,2)zND,2 UND,2

Dx (u - r )z
NDNT(ND)yD + ND,NT(ND) _ND,NT(ND) ND,NT(ND) NDNT(ND)

(S.O.S. Constraint) zNDI + ZND,2 + ... zND,NT(ND )

(Binary) z. * c {0,1 for all i,j

For the MIPS representation, the constraint and variable totals

ND NT(i)
are: MIPS Constraints - CC + z Z NC(ij) + ND,

-. - i-i. j-),
ND

MIPS Variables I {NPi) + NTli)),

-2"..."2
. .o.. .'- "

,. .- 4 -.- - . . V .°. ~ .' ~
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MIPS Binary NDI NT(i).
i-i

The second representation is designed specifically for representing

the finite union of a set of polyhedra via integer variables, and is our

sharp representation from chapter 11. For our division/technology

problem, the polyhedra are actually bounded polytopes, and the bounded-

HIP representation becomes as follows.

(HIPP) max: c Tx1 + c Tx + . + c Tx
-1- -22 NDND~

ST:

(Common) A x +*Ax +..+ A x b
1 22 ND..YD

xl 1 + x1 ,2 + + x1,NT(l) X 1

x + x +.+ x ux
-2,1, _2,2 _2,NTC2) _2

4*~ N, + +ND,NT(ND) D

(Division 1) D1 ,11 1 , rl 1z, 1 (0

D r z0
1 'NT(I )x1,NT(1 .j,NT(1) 1,NT(1)

(S.O.S. Constraint) z +, z + * + z NT)-

(Division 2) D2 9 x, r 0i,~,

D2NT(2)x2,NT(2) - 2,NTr2) 2,NT(2) (

(S.O.S. Constraint)+z 2 2 4..+2NT)

ND,124D,1 JD1N,
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Division ND)

ND,NT(ND),,ND,NT(ND) -ND,NT(ND)ZND,NT(ND) (0

(S.O.S. Constraint) zND,I + ZND,2 + ... + zND,NT(ND )

(Binary Constraint) z. • e (0,I)

Notice that the total variables and constraints of the (MIPP)

representation are, or can be, greater than for (MIPS). However, the

number of binary variables is the same in both formulations. Here are

some counts:

ND NTWi
(MIPP) Total Constraints = CC + ( E ( Z NC(i,j)) + NP(i)} + ND

i-l j-l
L--' -'.ND

(MIPP) Total Constraints - (MIPS) Total Constraints + I NP(i)

ND NT(i)
(MIPP) Total Variables - j I ( Z NP(i)) + NT(i) + NP()

i=1 j-1
ND NT(i)

(MIPP) Total Variables - (MIPS) Total Variables + Z z NP(i)
i-i j-1
ND

(MIPP) Binary Variables = (MIPS) Binary Variables - E NT(i).
i-1

The upper bound vectors x. used to determine the uj values for the

standard representation (MIPS), are data-dependent on the constraint

coefficients (D. ,). Rather than explain their calculation, a small

example best decribes this computation. Suppose Division I has the

,ZW following situation,

'-7d *d x4r rd x *d; x r;
1.,1 1,2 2 1 2'2

d 2,1 xd * d 2,2x2 r2  or d'x + d ' x 2 r'2,1~ 22 22,11 d2,2 2 2

h.:

..-.. ,

. .
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Note that dk,L is an element of D and d' is similarily an element of
T!

D of MIP. Likewise frl, r2  , and r, respectively are r and
1.2 1'2 epcivl r 1

r2 respectively of MIP.

To determine x and x we compare the following ratios;

,iXl maxIminr l/dl 1 :2:d2 minr Id l r21d2,18

x2 =nax{min(r /d r/in(rild, ;/d2

with all d and d! non-zero. If a . or d!. is zero, the

corresponding terms are omitted (recall that all matrices are

nonnegative).

We set each x. to its least upper integer bound (to keep within

integer data) and then find u. . as follows.
.°,,'.'." .i.1

ui D x. where x. I x

In our example,

U)(d 2,)x + (d )x

"- u(d 1 )x* + (d )x*

u1,2 ]2 d, 1 x 2,22
.2 L, 2 ) 2

: .. 2,..A sample problem with 3 divisions and 2 Technologies/Division, 3

':""products/Division, 3 constraints/Technology/Division, and 3 common

. .:.:. constraints is included in Appendix B.

a. =

.t1.,

MI (dj.' x*. .+. . ,
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@ The idea behind our approach to the setting of upper bounds, is that

the quantities xi, x 2 $ etc.* are the best valid upper bounds, if we know

only that one of the alternative divisional constraints hold (but we

don't know which one). While the bounds for u 1 , u 1,2' etc., may seem

extravagant, actually they are approached in the worst case.

Therefore, our procedure represents a reasonably "tight" bounding

method, which the user could quickly implement. The user might obtain

even better bounds by running many LP's, etc., but our method is fast and

does not use the large bounds which are encouraged by some authors for

the standard formulation.

It has been observed in practice, that excessively large bounds

make the standard formulation virtually useless in algorithms. Thus our

experimental results concern a different phenomenon, since we provide

reasonable bounds for the standard formulation. Moreover, the total

failure of sharpness in the usual formulation will occur even if optimal

* - upper bounds are used.

We look at three criteria in evaluating the results of our

computations. We monitor the solution time of each sample, the total

number of nodes of the branch-and-bound tree solves as LP's, and the

ratio of LP relaxation optimum to the actual mixed integer optimum.

The solution time of each test problem is recorded in CPU seconds.

CPU time involves only the actual computer time used in solving the
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fl problem, The time recorded excludes input and output times since these

are negligible on large problems.

The number of nodes solved as L.Ps includes the actual number of

LP's solved, including the initial LP relaxation. The larger the number,

the further "down" the tree, or the larger the branch-and-bound tree

becomes before an optimal solution is either be found, or verified.

U Finally the LP solution to optimal MJF solution ratio measures the

>/ accuracy of the initial LP relaxation to the actual MIP solution. This

ratio may be very essential for problems in which only an approximate

solution is necessary, or for codes which use different branching rules,

variable choice rules, etc. than does ours.

%d ~ Our test problems range from a 3 Division, 2 Technologies per

Division, 3 common constraints, 3 constraints per Technology, and 3

products per Division; to a 15 Division, 3 Technologies per Division

problem with all other parameters the same. While relatively small,

these problems give significantly different results for all three test

criteria between (MIPS) and (MIPP). The largest representation contains

153 constraints, 210 variables with 45 discrete (binary) variables, of

which 30 are declared binary. The number of binary variables actually

used in our tests is less than indicated in (MIPS) and (MIPP). This is

accomplished by designating one variable of each Special Ordered Set

constraint as continuous. Clearly this does not affect the optimal

solution, but will reduce the number of binary variables.

The cost coefficients in the objective function, and all

constraint coefficients (for all A and D matrices) are randomly generated
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integers with bounds 10,101. The r.h.s. vectors for the divisional

constraints (r. .) are calculated as,

r. 2*(sum of row coefficients) * 1.

The vector b of the common constraints is set to a *(sum of row

coefficients), and we use values a 1.1, 1.5, and 1.9 in our study. For

the value a - 1.9, the common constraints are virtually not binding, so

that the time comparisons become essentially a comparison of the

modelling techniques.

RESULTS. The following tables outline the results of our test

problems. Table I contains information concerning problems in which the

common constraint a value is a a 1.1. Similarily Tables 2, and 3

respectively have a values of 1.3 and 1.9, respectively. Problems in

Table 4 are run using Martin's BANDBX code. For the Problem column, the

following notation is employed: n1 - n2 means that there were
1 2

Divisions, with n2 Technologies per Division. All problems have 3

products/Division, 3 common constraints, 3 constraints/Technology/

Division. The column headed (#) gives the number of problems in the

sample for this size; and the column (#1) indicates the number in the

sample which are solved by the first linear program.

The results support our expectation that the (MIPP) representation

requires fewer branch-and-bound subproblems (nodes) before obtaining an

optimal solution than the (MIPS) representation. At Q = 1.1, the average

node advantage of the (MIPP) representation ranges from 2 to I for the

smallest sized problems (3-2), to over 13 to I for problems (8-3). We

run two large problems (12-3) and (15-3) a limited number of times (only

. . . . . . . . . . . . . ... *. . . "" "' "-
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Table 1. Multi-Division Problems
R.H.S. Multiplier (1.1)

Nodes Ratio

Problem # Time MIPP MIPS LP/Discrete

MIPP MIPS Avg. max #1 Avg. max. #1 MIPP MIPS

3-2 12 .625 0.39 1.833 3 5 3.75 7 1 1.0005 1.084
5-2 12 1.86 2.36 2.5 6 2 9.917 19 0 1.0047 1.098
8-2 12 3.579 11.518 2.166 5 2 29.08 65 0 1.0007 1.174
3-3 12 1.638 0.913 3.916 12 3 6.67 13 1 1.0048 1.088
5-3 12 3.154 6.933 3.75 7 2 24.25 57 0 1.00275 1.102
8-3 12 8.847 33.5 5.16 10 1 69.25 165 0 1.0008 1.1336

12-3 9 21.431 484* 4.11 9 0 140* - - 1.00168 1.1466**
15-3 4 29.1 399* 5 6 0 382* - - 1.00046 1.144**

,. *Only one sample
**The ratio is the LP over the Best Solution found

Table 2. Multi-Division Problems
R.H.S. Multiplier (1.3)

Nodes Ratio
Problem # Time MIPP MIPS LP/Discrete

MIPP MIPS Avg. max #1 Avg. max. #1 MIPP MIPS

3-2 18 0.83 0.69 2.2 4 6 4.9 7 0 1.0066 1.142
5-2 18 1.92 2.72 2.3 4 3 9.0 29 0 1.0009 1.118
8-2 18 5.89 18.60 2.7 7 3 9.6 91 0 1.0013 1.174
3-3 18 1.69 1.52 3.4 10 3 9.7 17 0 1.0032 1.133

5-3 18 4.20 11.52 3.9 10 1 38.2 118 0 1.0011 1.174
8-3 18 10.99 123.5 4.5 18 4 196.7 597 0 1.0017 1.116

0 12-3 3 19.4 - 6.3 9 0 - - 1.00008 -

., 15-3 3 30.5 - 4 9 1 - 1.00008 -

. . m"%

I.°,

. *o-.
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Table 3. Multi-Division Problems
R.H.S. Multiplier (0.9).

Nodes Ratiop3Problem # Time MIPP MIPS LP/Discrete

MIPP MIPS Avg. max #1 Avg. max. #1 MIPP MIPS

3-2 8 0.97 1.44 2.0 3 2 8.75 14 0 1.0026 1.186
5-2 8 2.32 10.42 2.0 3 1 32.75 55 0 1.0006 1.2383
8-2 8 6.60 64.92 3.0 6 3 115.4 278 0 1.0034 1.1926
3-3 8 1.59 4.13 2.38 3 0 21.1 31 0 1.0088 1.1971
5-3 8 5.57 41.77 4.12 9 2 lU7.7 337 0 1.0041 1.2393
8-3 8 12.22 311.68 3.63 7 1 407.4 762 0 1.0013 1.2283
12-3 3 25.0 325* 3.66 4 0 218* - - 1.0004 1.1408
15-3 4 35.15 306* 7 14 0 270* - - 1.0008 1.315**

*only one sample
- - **The ratio is the LP over the best discrete found when stopped.

7.y

%.
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one sample of each using the (MIPS) representation) to support our

premise that the node advantage increases with problem size. We actually

stop the computer before the (MIPS) model is solved to avoid excessive

m computer charges.

At a 1.9 the nodal comparison shows greater advantages for our

(MIPP) representation, ranging from 4:1 for problem (3-2) to over 100-1

on problem (8-3). Again, the single (MIPS) models of size (12-3) and

(15-3) are run for 5 minutes of CPU run time before we stop the code.

Recall that for a = 1.9 the common constraints have almost no effect at

all, and many problems solve as LP's in the newer (MIPP) formulation.

We are surprised at the dominance of the (MIPP) model with

respect to run time. Only the smallest problems are run faster using the

(MIPS) representation. At ax 1.1, the time advantage reaches 4-1 for

problem (8-3) and continues to increase for the two larger samples (12-

3), (15-3).

Again at a = 1.3 and 1.9 the time advantage is even more

significant, reaching 12 to 1, and 25 to I respectively for problem (8-

.3).

Table 4 summarizes problems solved using the BANDBX code. The

problems are all of size 10 Divisions, 3 Products per Division, 3

Techiologies per Division, 3 constraints per Technology, and 3 common

*! constraints. The a value is 1.3 for all problems in Table 4. For the

five problems run using the ,ANDBX code, our (MIPP) formulation finds the

discrete solution much faster (in CPU seconds) and more efficiently with

. respect to branch-and-bound node counts. The standard (MIPS)
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Table 4. BANDBX Code with RHS Multiplier (1.3)
• .10 Divisions, 3 Products per Division.

TIME (CPU seconds) Number of Nodes LP/DISCRETE

' PP MIPS -PP MIPS Ratio
Problem 

To To Ratio

(10 Divisions) LP Total L, tal Find Total Find Total MIPp MIPS

1 36.95 161.8 2.29 300* 8 9 222 325* 1.006 1.34**

2 46.37 54.6 1.84 258.1 2 2 14 261 1.0008 1.12

3 44.10 120.4 3.13 300* 5 5 240 360* 1.003 1.27**

4 41.4 41.4 2.29 300* 1 1 71 298* 1 1.28**

5 40.0 40.0 2.6 300* 1 1 52 324* 1 1.28**

*did not solve the problem before computer shutoff
**ratio is the LP over the Best Discrete Solution found

Sq

6° I

. . . . .
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formulation, as Table 4 shows, solves only one of the five samples within

our 5 minute CPU time limit. Incidently, we continue to run problem #1

for 10 CPU minutes without verifying an integer optimum. Because of the

time limit imposed, it is not possible to compare exact solution time or

node counts between the two formulations. Even so, comparing the number

of branch-and-bound nodes solved favors our (HIPP) formulation by at

least 30-1 for the worst case sample. This worst case result occurs in

sample #1 in which the (MIPS) LP/DISCRETE ratio is very high (1.34). The

significance of the (LP/DISCRETE) ratio is also evident in that our

(HIPP) formulation results in an LP relaxation solution within 1 percent

of the optimal discrete solution. On the other hand, the best

(LP/DISCRETE) ratio of the (MIPS) formulation is 1.12, which represents a

12 percent error. Incidently, the only problem solved using the (MIPS)

formulation also has the lowest (LP/DISCRETE) ratio. With the advantage

increasing with problem size, tremendous time savings seem possible using

our formulation for even small-sized industrial problems. We caution,

however, that the problems in our study are randomly generated, and do

Z'. not derive from an actual industrial application.

Of course, a more efficient computer code would solve our small

problems much faster, probably with fewer nodes. But the third test

statistic, the LP relaxation solution-to-mixed integer optimal solution

ratio, is invariant with respect to individual computer codes, heuristics

used, and whether or not a problem is solved to proven optimality.

For all Q values, our (MIPP) representation has an initial LP

solution within 12 of the final mixed-integer solution value. On the

4 - .1 .*. ..- _ _..:...' %'.,,%' .'. - " . L..' L .'. . . ,, .. .
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other hand, the (MIPS) approach errors by at least 8% on the average, and

the error appears to increase with problem size.

Section 3.4: The Experiment for Piecewise-Linear Separable Programs

with Fixed-Charges

The scenario for these test problems involves a manufacturer which

must meet the demand of several separate categories of products. For

each category, the company assembles up to three end product categories,

each of which meets the specification of that category, and only that

category. Any combination of end products in a certain category may be

used to meet the demand requirement of that category.

For example, a computer may be designed to meet certain

* specifications. Several configurations of off-the-shelf intermediate

products may represent different end products, all of which meet the

same specificatZons. In that case, all the end products fall into the

* same category.

Each end product is assembled from a specific combination of inter-

mediate products. These intermediate products are coimmon to all end

1% products. The intermediate products are high demand items each with its

own cost function. The goal of the company is to meet demand of each

category while minimizing its cost of intermediate products. We do not

include assembly costs, i.e. we take the perspective of the

intermediate-products' manufacturer.

9. The cost function of each intermediate product is a separable linear

function with three separate fixed-charges. For instance, the cost

*function of the i th intermediate product is:

fS n
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N

0 if x. = 0; (3.4.1)
f0i + si*xi; if x i c (0,Bil;

f.(xi) * f + a *B + f + (xi - B )* s2i if x. c (Bli,B i]
11 Oi li Ii Iii ii 2i 12i

£ *( - )*k 4.
foi + Sli* BIi +fill + (B 2i -B i 2i+

f2 i + s3i* (xi - B 2i) if x. e (B 2i'B 3i;

We consider that the fixed charges are incurred when some technology

reaches (physical) "capacity," and a second technology must be used. We

graph the function of (3.4.1) as Figure 3.1.

.'A
-

-U,

'U,'

%.,

./9,
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Notation for the problem is included below:
S = set of similar end products meeting the specifications of

category k. iSk( f 3.

NC = Total number of categories

d = demand of category k.4, k

thyj The j end product made from a specific combination of

intermediate products.

NYt = The total number of end products.

xi = The it h intermediate product

fi(x i) - The cost function of the ith intermediate product.

Represented by Eqn (3..1) and Figure (3.1).

NXi - The total number of intermediate products.

n(ij) - Matrix representation of the combination of x.

required in the assembly of each yj.

The problem is now modelled as an optimization problem:
Fixed-Char ge Problem

NXi (3.4.2)
win: I f.(x.)

S.t,:

ANYt
(Product Nix) (I.) Z n(i,j)*y. = x. for ial, NXU

jai j 2.
(Demand) (II.) Zkyj v dk  for kal, NC

all vars. 3 0

%.,I
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The variables in (3.4.2) are not required to be integral. as it is

*'assumed that the values of x. e nd y are sufficiently large to allow

such a continuous "approximation."

A standard method of representing a fixed charge problem involves

removing the fixed charges and separately representing the remaining

function. The economies of scale of each intermediate product results

in the remaining function being a separable linear function (concave),

8*~ > s2. > a for all i1,l NXi. After the remaining separable

function is represented, the fixed charges are represented as a separate
A..

MIP representation. Finally the fixed charge representation is

"oadded-on" to the separable representation. Thus the original fixed

charge problem is the combination of two individual MIP-representatiofls,

the imodels have been "Linked" together.

We us* a common standard procedure of representing the separable

function, which we draw in Figure 3.2.

.

%I. Figure 3.2, Separable Function
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To model the piecewise-linear function of Figure 3.2, we insert

into the objective function this term:

NXi (3.4.3.a)
I {A1 *s *B +i-i i*li*Bi

A 2*(Sli*Bli + (2i*B 2i. Bli +

13i*(sli*Bli + s2i*(B2i-Bli) + s 3i*(B3i - 2i)}

The following are inserted in the constraints:

x.-(Al i*Bli + X A2*B 2 i+ A 3i*B3 .) 0 for inl,NXi (3.4.3.b)

A0. + Al. A2. + A3. 1

AOi + AIi  -01i  ) 0 for i-l,NXi

Ali A2 -e2 ) 0
01i 02 i  03. - 1

li, 02i, 03. N 0 integer

This modelling (3.4.3) is not hereditarily sharp since e.g.,

03. = 0 does not imply X3i a 0. It is simply one which is similar to

those in common use.

We represent the fixed-charge step function using two standard

techniques, (I) and (II). By separately "adding" (I) and (II)

representations to the representation in (3.4.3) above, we have two
-

o.*£- co~mmon"y used HIP-representations o*ororgnlprbe (..t

.4
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For "Fixed Charge I," we put into the objective function the

term:

NXi (3 .4.4.a)
i (f *zO +f .*Zl + f *=2i )iIOi 1 i 2i i

and we put into the constraints:

xi - B31*zOi 1 0 (3.4.4.b)

xi -(B3i - Bli)*zli  Bli for i-1, NXi

x. -(BU - B 2i)*z2i c 2i

zoi, zli, z2i o 0 integer

When (Fix-Charge I) is "added" to (3.4.3) we have our first

standard HIP representation, we call the representation (STANDARD I), or

just (I). Incidentally, (3.4.4) is not sharp for general bounds and

fixed-charges. The second technique commonly used to represent a step

function adds an additional variable for each fixed-charge. This

representation (3.4.5) is sharp and is similar to the "6 method"

contained in Bradley, Hax, Magnanti 15). For "Fixed-Charge 2," we put
into the objective the term:

NXi (3.4.5.a)
if Oi*ZOi + fi*Zli + f 2i*z2 i

, •~~~~~~~~~~~~O ,,.-.2 ... :........i,,,. ,.. . .% . .
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and we add in the constraints:

x. - (xl. + x2. + x3.) = 0 (3.4.5.b)

xli - B i*zO i 0

x2i - (B2i - Bli)*Zli  ( 0 for i-1, NXi

x3 i - (B 3i - B 2i )*&2 i  . 0

xl - B *zli  0
i 11 1

x2i - (B2i - Bli)*z2 i  0

zOi, zli, z2. 0 integer

By adding (Fix-Charge II) to the (3.4.3), we have the second

Common MIP-representation of the original problem, which we call this

(STANDARD II), or (II) for short.

Notice that the (II) representation has the tame number of integer

variables as (I), but more total constraints and continuous variables.

Therefore we expect that, unless the branch-and-bound node count of (II)

is much less than the count for (I), problems will be solved faster using

the first method (1). In fact, this turns out to be the case, showing

that variable counts can sometimes overcome a deficiency of sharpness.

Note that in both I) and 1II), the fixed-charge variables zji are

separable from the segment variables eji, which results (as we see below)

in an unnecessary doubling of the number of binary variables. However,

.4 we cannot validly set, e.g. z0i 0 ei, for possibly Ali a 0m zO., 01.

X 1. This problem can be overcome by an ad hoc device in this

specific setting, but such devices go beyond what one would do in using

the standard modellings as they have been described.

A ,. • * . .
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We next use the extreme point form of our sharp representation to

model the entire function of Figure 3.1. Using our sharp rep-esentation

there is no need to separate the fixed-charges as before, and we actually

require fewer integer variables and fewer total constraints and variables

than either of the common methods.

We put into the objective function:

NXi (3.4.6.a)
Z {Al.*fo+ A2i*(f + f + al*B +

1- D. i I Di ii ii i

3i*(f oi + fii + f2i +SBi ii +  2i *(B2i B i) +

112i*si *Bli + A22i*(s 2i)*(B2i - Bi ) +

X32i*s 3i*(B3i - B 2i)

and add to the constraints:

a.,

(III.) (A12 + X21.)*B + (X22 + X31 )*B (3.4.6.b)
1 l ii 1 i 2i

+ A32* B =x. for il, NXii 3i 1

(Iv.)

Al. - ( .ll + A12.) = 0

A2L - (A21 I + A22L) = 0 for i-1,NXi

A3 - (31. + A32) 01~ (X1 1

A 1 i + A2i  J%3 i  1C1

Al., A2i, A3i ) 0 integer

This formulation is worked in detail in Appendix A.
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%

We conclude with a fourth modelling also involving the two

separate parts of the function of Fig. 3.1. This modelling differs from

* Standards I and II, in that both parts are separately done by our

"extreme point representation" (as described in Appendix A), so each part

*; separately exhibits sharpness and hereditary sharpness. This fourth

I, A*modelling is called "SEMI-SHARP" (for lack of a better name!), and it is

in the comparison between SHARP and SEMI-SHARP that we isolate the issue

of modelling linkage. The other comparisons provide information which,

while involving linkage, also are compounded with other effects.

SEMI-SHARP uses this formulation for the piecewise-linear part of

the function:

#1:i NXi
Z {X12. + A2 + X3 s *B (3.4.7.a)Si~l i 2 i ~ ii

+ X22 i + 43)*s *(B -B
.F i 31 2i 2i i+" 32i *s3i *lB3i-B 2i)

is added into the objective function, while these relations are added as

constraints for iil ,..., NXi:

x .W2+ 21 A + U\2 + )X31.Th + X32iB(34..bxx i)I i 1 3. )2i iB3i

XI I. + X12. \1.

2. 1 2

A21. + A22. A A2.

" 31i A32 i  3

U...,W

• ".".,. "• " - • , .• . .. """"_. .. ')"%"."',.., "'_ .''"''. ' ., ,."" 
"
" ",, ." 

"
"' .\ ' " .. .". ,"...": _" -: ,.. _ .: . .' " '"""-'_ _, . t"" " "" "" "' ..." "'- ---- ,*'-" " "',"" .
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Al. * A2. * X3i - I

AIl, X2i, A3i are integer

Also, all variables in (3.4.7.b) are nonnegative.

SEMI-SHARP uses this formulation for the fixed-cost part of the

function:

I - NXi
I"- (() foi 02i(foi + fli) (3.4.8.a)

+ 03i(fOi + fli + f2i

is added into the objective function, while these relations are added as

constraints for all i:

x (012. + 021.)Bli + (022 + 031i)B2 i + 032 B31  (3.4.8.b)

011. + 012. 81.

.e. 021. + 022. e 02.

031. + 032. 03.

1. 0 i + 02i + 03i 9 I

li, 02i, 03i integer
.4.,

Also, all variables in (3.4.8.b) are nonnegative.

% For this problem, the sharp representation requires one-half of the

integer variables than those required by either of the standard

5representations.

-4 - .~. . . .'. . .. , . . ., , ,, . , _._ r. . . . .
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Table 5. Problem Sizes of Models.

Total Integer
Model #Constraints # Variables Variables

STANDARD I 10 * NXi + NC 13 * NXi 6 * NXi

II 13 * NXi + NC 16 * NXi 6 * NXi

SHARP 6 * NXi + NC 12 * NXi 3 * NXi

SEMI-SHARP 11 * NXi + NC 19 * NXi 6 * NXi

I -6

-i.7

4....

4,.

-
.
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While the primary goal of these experiments involves "modelling

linkage" comparisons, we also compare a heuristic commonly used in

applications of mixed integer programming. This heuristic attempts to

reduce the number of branch-and-bound nodes solved in verifying a

feasible mixed integer solution within 2Z of the optimal solution. The

heuristic fathoms a branch-and-bound limb if the current problem solution

is either infeasible, integer-feasible, or within 2Z of the best known

mixed integer solution.

Several problems are tested using three different mixed integer

programming codes; Land-Powell, C. H. Martin's BANDBX, and CDC's APEX IV.

Test Problems

The test problems generated have the following parameter

.[ characteristics:

NXi = 5, 6, 10

NYt = 2*NXi

NC = [NYt/3]

dkE [100, 200] integer, random

n(ij) e [0, 51 integer, random

_Sl E [1,51 real, random

s2i = S* li

5 3i = Sas2i

RES - 0.8

S (1.2,3)

,..-. S2  (4,5,6)
.. 2

_ . %* .~ . ~ . * . . . .. . .. . * . .. * . *. - - •... . .. . •~* * , , C

O p_." -" % -,
. - - - ' "

" ' % . " ' ." ""." " ' " " ,"." " ' " ' ."."," , ." r ' ' ,',,,
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"4J.

Sk ( (remaining end products)

NC
B X (d /Is ) * C - n(ij)), integer
2i kIk k j~k~k

Bi 10/2 * B)
ii 2i

,.4 3 3i 2i
fo0i = [ (P/(l-P))*(s li*Blid)]

f a p/(I-P)* s .*B - B*)
ii2: 21 1i

'ft.. 2i f [p/(i-p)* s *(Bi Bli) ]
P - 0.1I, 0.5

For our problems "p" represents the percentage of total cost which

is a fixed-charge. In other words, a low value of "p" results in the

fixed-charges being a relatively small portion of the total cost of

ft each intermediate product. Our calculations are based upon the following

principle. When the amount of x. used is at either Bi, B or B
I 2i' r 3i'

then "p" represents the actual fixed-charge percentage of the total cost.

Clearly, at any point other than the three above, and x.=0, the fixed-

charge percentage of total cost will be greater than "p" so long as ali

s2i are strictly greater than zero.

--- To ensure each intermediate product is utilized, we eliminate zero

columns from matrix n. Notice that the calculation of Z2i insures a

feasible solution with each xi at, or near, B2i.

p..

.
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We run problems with as many as 15 intermediate products (NXiI15).

While not large problems, they are very difficult to snlve.

RESULTS:

Practice has shown the fixed-charge problem to be an extremely

troublesome problem to solve using the branch-and-bound technique.

Through our sharpness property, we know that the difficulty is caused by

the inherently poor "relaxed" approximation, even using the best possible

sharp" representation. Our test problems show that the problems remain

"', difficult even using our sharp representation, and also that there

remains an advantage to these representations. Even the "best possible"

linear relaxation is evidently fairly inaccurate as an approximation to

the fixed-charge functions.

Tables 6-9 represent samples run using Land-Powell's branch-and-

bound Mixed Integer code. Problems of Tables 10 and 11 were run using

Martin's BANDBX code, and CDC's APEX IV was used for the problems in

Table 12.

Our first experiment is reported in Table 6, and does not involve

the SEMI-SHARP modelling.

.2

,2 %

*1

"o

-?. _ -. Kv:). ~*. .'>. K -~-~K ~.
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Table 6. Experiments Using Land-Powell, NXi-5.

# # DISCRETE/
SAMPLES P - 0.5 TIME NODES LP RATIO

8 SHARP 9.556 30.75 1.36
8 I 34.04 71.5 1.86

" 8 II 62.42 81.75 1.36

# DISCRETE/
SAMPLES P = 0.1 TIME NODES LP RATIO

8 SHARP 25.01 83.38 1.22
8 1 65.61 138.25 1.48

8 1I 106.29 131.38 1.22

--- 4 ,

:. '5

..*.':- . , . . .. -- . ,.- -..-
• 4-. . . . . . . . . .. .... . .. . .. .., ,,,..,. ,'.,. -'',
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Table 6 shows that small problems are difficult to solve, and that

,ur combined representation is superior in all three categories. We also

notice that, even though the problems with small fixed-charges Cp0O.I)

have more accurate initial LP values (22% versus 36% using our combined

model), the problems are actually harder to solve than those with

significant (p - 0.5) fixed-charges.

* The degree of fixed-charges does not appear to affect the

computational advantage of our combined method (v.r.t. nodes and time).

Aside from the indication that the combined representation is

superior to either standard method, it is interesting to note that the

Standard 11 representation appears to give sharp initial LP relaxation

solutions. The Discrete/L.P. ratios are identical to those of our sharp

representation (the L.P. solutions are identical). But after starting at

a much closer solution than Standard 1, the total nodes required is

virtually the same for both I and II. Furthermore, even if the initial

(11) solution is sharp, it requires more nodes than our sharp

representation.

In our second experiment for these fixed-charge problems, we

retain the better of the two "textbook-like" formulations from the first

experiment (this was STANDARD 1), and run it together with our SHARP and

SEMI-SHARP representations. We also gather more data than before. The

- results are reported in Tables 7, 8, and 9.
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Table 7. Seven Problems with p-0.3, NXi-5
Using Land-Powell.

Avg. Time

Avg. Time to Find Total Number
Formulation to LP Optimum Time of Nodes Discrete/LP

SHARP 1.3 sec. 14.3 18.7 63.3 1.26
- 2.0 8.7 41.3 84.4 1.50

SEMI-SHARP 3.8 30.0 60.9 79.3 1.26

Table 8. Problems with p-0.3, NXi-6,
Using Land-Powell.

Avg. Time

Avg. Time to Find Total Number
Formulation to LP Optimum Time of Nodes Discrete/LP

SHARP 2.0 sec. 22.6 36.5 94.8 1.32
1 3.0 40.3 120.2 176.6 1.56

SEMI-SHARP 5.5 25.2 129.2 119.2 1.32

. Table 9. A Hard Problem, p=0.3, NXi-6,
Using Pand-Powell.

Formulation Time to LP Time to Opt. Total Time Nodes Discrete/LP

SHARP 2.0 sec. 57.4 62.9 137 1.24
1 3.4 67.7 133 900 1.46

SEMI-SHARP 5.4 113.4 400 unknown 1.24

.% . " _ _ _ _ _ __ _ _ _ __ _ __ _ _ _ _ _

ii."
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In Table 7, it is interesting to note that STANDARD I actually

Outperforms SEMI-SHARP in terms of the "Total Time" criterion (as veil as

the average time-to-find an optimum). However, as the number of binary

variables increase from 30 to 36 (Xi - 5 to NXi - 6), the gap in

performance noticeably diminishes. We conjecture that these problems

are simply too small for the SEMI-SHARP modelling to have an advantage.

The SHARP modelling is superior in the "Total Time" criterion,

although for the set of smaller problems (NXi=5) it is somewhat slower in

locating a optimum. The SHARP modelling also has somewhat fewer nodes in

the search tree, but this relative advantage is not of consequence. Of

course, the SHARP modelling has a better Discrete/LP ratio, but it is far

.too large to permit heuristic solutions at reasonable levels of error (0-

4%) for industrial problems.

A harder problem with NXi=6 is separately reported in Table 9. It

is solved to optimality only by the SHARP formulation, although all three

formulations do find the optimum.

Tables 10, 11, 12, and 13 compare our SHARP and SEMI-SHARP

formulations. Table 10 compares three problems of size NXi=5 using

Martin's BANDBX code. The results in Table 10 indicate the dominance of

our hereditarily SHARP formulation over the SEMI-SHARP formulation. The

-* SHARP formulation is at least 3 times more efficient in node counts and 8

times faster in total CPU time.

Tables 11, 12, and 13 represent the larger (NXi=l0, NXi-l5)

samples. Table 11 contains the results using our "2% Heuristic," Table

*. . . ... . ° o .", '. , . . . . . . .. .. . . . . .. . . . . . . ... .- , * _* . *
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Table 10. Three Problems With NXi1,#
Using BANDBX.

Time (CPU se onds) Nodes
To Find To Find Discrete/LP

Problem ILP Discrete Total Best Dscrete Total Ratio

I- 1 SHARP 0.55 3.19 6.82 15 25 1.38

SEMI-SHARP 1.68 31.2 54.4 56 78 1.38

2 SHARP 0.58 7.05 10.87 26 38 1.35

SEMI-SHARP 1.58 49.7 95.87 81 133 1.35

3 SHARP 0.57 1.74 4.67 10 19 1.23

SEMI-SHARP 1.64 59.49 126.32 82 155 1.23

o'%

-V.

-.5

S.i

.~

'Uo

.5 I
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Table 11. Six Problems With NXi10
With 2% Heuristic, using BANDBX.

Time (CPU seconds) Nodes

Discrete/LP

Problem To Find Total To Find Total Ratio

I SHARP 52.32 118.82 69 128 1.33

SEMI-SHARP 380.6 600* 177 241* 1.33

2 SHARP 24.2 400* 3b 357* 1.31

SEMI-SHARP 405.3 600* 192 268* 1.29

3 SHARP 36.6 267.6 48 229 1.26

SEMI-SHARP 246.0 600* 123 246* 1.26

4 SHARP 22.9 202.8 30 186 1.29

SEMI-SHARP -- 600* - - No Discrete Found

5 SHARP 40.28 305.0 51 276 1.31

SEMI-SHARP 346.1 600* 131 197* 1.31

', 6 SHARP 9.46 505.5 16 429 1.27

SEMI-SHARP 341.3 600* 116 183* 1.26

*The Branch-and-bound Algorithm automatically stops after the cpu time
indicated to avoid excessive computer changes. Thus, Total Time and
Total Node columns summarize the conditions as the algorithm stopped.

%U

.. . . . . .. ... ..... ...... ....



Table 12. Six Problems With NXilO0
Exact Algorithm, Using BANDBX.

Time (CPU seconds) Nodes

Discrete/LPProblem To Find Total To Find Total Ratio

I SHARP 57.37 128.99 74 139 1.33

SEMI-SHARP 544.2 600* 237 251* 1.33

2 SHARP 32.7 600* 42 427: 1.31

SEMI-SHARP 407.3 600* 192 244* 1.29

3 SHARP 37.6 315.5 48 274 1.26

SEMI-SHARP 248.7 600* 123 243* 1.26

4 SHARP 28.83 274.5 30 214 1.29

SEMI-SHARP 528.1 600* 241 262* 1.31

5 SHARP 90.48 346.4 82 266 1.30

SEMI-SHARP 369.12 600* 131 243* 1.30

6 SHARP 22.12 418.1 26 310 1.25

SEMI-SHARP 330.8 600* 135 228* 1.25

*(see previous page)

~.
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12 contains identical problems run using an exact algorithm. To read the

table, notice that the column entitled "Best Discrete Solution fo::nd" may

not be the exact optimal solution of the problem. The 2% heuristic may,

and often times does fathom a limb of the branch-and-bound tree before

the actual exact optimum is found. Correspondingly, the "NODES TO FIND"

column indicates the number of nodes required to find the best discrete

solution found. The most prominent result of the samples is that the

3EMI-SHARP formulation is unable to solve any of the samples to

optimality, or even to within 2% of optimality (using the 2% heuristic)

within 10 CPU minutes of computer time. The next most prominent feature

is the difficulty of the problems even for the SHARP formulation. Notice

the high (LP/DISCRETE) ratios. (We look at the relationship between the

LP relaxation proximity to the Discrete solution and problem difficulty

in the next chapter).

We also find that the 2% heuristic has a very minor effect upon

problem solution. While finding the best available discrete solution

j~. faster and more efficiently than the exact algorithm, the heuristic

algorithm does not always terminate as fast or as efficiently. Detailed

computer printouts indicate that when the heuristic causes a branch-and-

bound limb to fathom before reaching the exact optimum (problems #2, 5,

6), the algorithm may search more nodes before terminating with a soluton

guaranteed to be within 2% of the exact optimum.

Table 13 summarizes three problems run to exact optimality using

APEX IV. The first problem is identical to problem #6 of Table 11 and

S Table 12. Notice that the times are actually APEX Units and cannot be
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Table 13. Three Problems Using APEX IV.

Size Time (APEX Units) Nodes Discrete/LP
Problem NXi- LP To Find Total To Find Total Ratio

1 SHARP 10 2.25 92.0 192.1 137 315 1.25

SEMI-SHARP 4.15 617.0 972.7* 699 2113* 1.25

2 SHARP 10 2.31 90.237 186.9 182 373 1.26

SEMI-SHARP 4.14 150.1 2305* 135 2668* 1.26

3 SHARP 15 3.5 199.6 1458* 229 1791* 1.25

, SEMI-SHARP 7.2 615.1 2489* 420 2003* 1.25

*(see previous page)

ft.."
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directly compared to CPU seconds, even though we have found APEX units to

be virtually identical to CPU seconds in our experiments. Again, even

though SEMI-SHARP produces an identical LP relaxation solution as the

SHARP formuation, its (SEMI-SHARP's) lack of hereditary sharpness causes

the code to search much longer to even find a feasible integer solution.

Since the SEMI-SHARP formulation does not solve the problems, exact

comparisons are unavailable. However, the SHARP formulation is at least

7 times more efficient and over 10 times faster (problem #2). Tht third

problem is the largest, NXil15, and the results display the difficulty Of

these type problems.

The results of our tests indicate a definite computational

advantage of our hereditarily SHARP formulation over both non-sharp and

non-hereditarily sharp formulations. The advantage appears to increase

with problem size, however the difficulty of the problems prevents us

from confirming our hypothesis.

VA

IN

.r. ...
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APPENDIX A:

TWO FORMULATIONS FOR BOUNDED-MIP REPRESENTABILITY

.- Suppose that a finite union S of polyhedra S - PI U ...U P

satisfies the condition 0) on recession directions, from the Theorem of

Section 1. Then by that Theorem, S is bounded-NIP representable. In fact,

in chapter II we provided two mixed-integer formulations for the set S: the

.- o "polyhedral" form, and the "extreme point" form. The "polyhedral form" is

given as follows. If Ph {x IA x b I for h-I s is a polyhedral

representation of Ph' then S is represented by

~8.! s

x = I x (AI.1)
h-1

h h h
A x ), b Ah h ,..., s

z Ah = 1, Ah  0 forhil ,...,s

A h integer

(Al.I) is the form given by Balas [2] for the constraints of a

disjunctive program. It is also, after algebraic simplifications, the dual

to the linear system of the co-proposition of a statement

•h h
V (A x ) b ) in "disjunctive normal form" (for definition, see [13]) where

h=i
"V indicates the "or" connective, or disjunction (for a proof of this fact,

see 110]).

1P 10.
.,-
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S Let us consider first a "distribution center" formulation. Here,

if any flow x. from the center (a 4 j 4 t) is positive, the center must

be built, and so a "fixed charge" of c > 0 assessed. Using the variable z

for the charge, we have t-n2 and S a P U 2, where P, 0 ((z, x .. x )Iz
1 2'1 t

;0 0and all x 3  ) 2 -{z 1 ,.,x)j z ;o c and all 0 -cx . M.

xj o. ,~ 2 {(.x

Indeed, S - epi(f) where

i x. >0, where all x. o 0,

fVx f'xn and x. 4 (A1.2)

if all X. 0

We seek a modelling of the function f, assuming a minimizing objective

function in which +f occurs.

To obain on sharp modelling, we utilize the polyhedral form

* (Al.1), and we obtain:

•-':22

fz, *, 2 xn (z . x 2  + (z 2 , , x 2 (AI.2)

'-',~) Ind ed z =  p)P h r

1 2
xi 0a 1 ,L 0 4 xl 4 A2 OMI

x t 0.A1,0 C t 1CA2* t

A + A A 0, X 01 2 1 2

A( and Xn integer

,... .A .'- .

1 2

- .. .. ....... ....... ........ .... S.0
n s f a n ( i is ptee r i a
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2 2
the modelling more perspicuous), we have x 2 xj for all j, )Z,

and (AI.2) gives constraints

0 4 x. f• M.Gz (AI.3)
J J

where +c.z is to be entered in the (minimizing) objective function. We note

that (AI.3) is different from the formulation x +...+ xt • Mez, with M =

M Mt, that is often suggested, and which is not sharp.

The "extreme point" formulation requires that we write each

polyhedron Ph as the sum of the convex span of points Vl,h a(h),h

which may be dependent on h (and which may be extreme points, for example)

and a convex cone generated by elements w ,..., w which are to be

independent of h. While the condition, that the Ph all have the same

recession directions, is not satisfied by all unions S a PIU ... UP.

representing S, it is satisfied by some union, when S is bounded-MIP-

representable, as noted in Section 3.2.

The extreme point formulation of S is
'.d

s e(h) *hi  0 (AI.3)
. E I + r e.w3

h-1 i-I hi j.l 

h 
.i 

" O'. 0

c(h)

.iih hi

;'-i'. -i

* h"- h

all A integer
h

.

Sd°
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The extreme point formulation has, generally, fewer constraints but more

variables than the polyhedral formulation. From a practical perspective,

the extreme point formulation cannot be used when any one of the polyhedra

is a "large dimensional cube," or any other polyhedron with a huge number of

probemwith t very much more than t=3 or 4, since P is a hypercube.

In uncionformulations where S -epi(f) and f is defined only on

abonde_ doain the sole recession direction is the (upward) vertical one.

*Since the function is to be entered into a minimizing objective function, at

a minimum the recession direction is not used, so in our formulation work we

often ignore it.

We conclude by indicating the derivation of the extreme point

formulation of the function of Figure 1. We have S - epi(f)

P U p U P U P where the polyhedra and their extreme points are as
1 2 3 4P

follows:

'-7-
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?'S

P, {(z,X) z ),0, X -0) (0,0) 1

P... 11f

-{CZx) I 0 4 x o 1i' (oig). 11

z O Oi 4( IiW fi(l)B ), l) A 12

P 3  -*~~ B i 1 x 4B 2if (f 1 *i f Ii+ (s Ii)(B i) , (B )d,'2

{ z x # f Oi + u f Ii ( Ii) li~ (f0 4i+fI (S li)(B ~IiA 2

-. ' Poyhdrn xtem oint

li 21 2i 2i- B1 i) B2i 22

.l- 4(- )(n}Cs.(

-';

P4  - {(z,x)l B2i 0 x 4 B i (foi)f ,f 2+S )(B )11

---. z f Oi +  (S+lf 2i (s2i)(B Oi(i i), 2 i X 1

,+(s 1 ( z )(B x i (fo i + 2 li + 2 ii)(Bi

+(S 2f fi )(B) (foi + ( i )( B )A

+ 3i )( 2i (i)(B3i 2i), B 3i 32

An algebraic computation of the extreme point from (AI.3) from the above

data, will yield the formulation (4.6) used in our experiment.

S. d.. ' , • ..

'

-5 "{zx I B~ 3 , (o~fifi(l)Bi

s ~ fi + fi+s*)NiBi) ~) 3

+(l5.i (o~l~~ill~~i

4 - * -
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APPENDIX B

ILLUSTRATION OF THE CALCULATION OF UPPER BOUNDS IN THE
STANDARD FORMULATION

Sample - 3 divisions
2 technologies/division
3 const./division/tech.
3 common constraints
3 products/division

max:
xl + 9x2 + 8x3 + 9x4 + lOx5 + 10x6 + 6x7 + 4x8 + 7x9

S.t.:

(common) (1) 8xl + 9x2 + 4x3 + 2x4 + 3x5 + 8x6 + 1x7 + 8x8 + 8x9 4 103*
(2) 5xl + 3x3 + 7x4 + 6x5 + 6x7 + 8x8 + x9 r 73*
(3) lxl + 3x2 + 3x3 + 3x4 + 5x5 + 7x6 + 7x7 + 9x8 + 7x9 ( 91*

Division I

(4) 8x1 + 5x2 + 73 41 ) 7xl + 1x2 + 8x3 4 3
(5) 4x1 + 3x2 + 7x3 4 29 or j (8) 8xl + 2x2 + 8x3 37

(6) 2xl + 4x2 + 9x3 c 31 (9) 7x2 + x3 17

10) 8x5 + 7x6 c 27 (14) 5x4 + 8x5 + 4x6 35
1(11) 4x5 + 2x5 + 6x6 < 19 or [(15) 3x4 + 2x5 + 6x6 C 23

(12) 1x4 + 6x5 + 2x6 35 (161 9 3x5 + 3x6 29

(18) 4x7 8M 8 + 7x9 c 39 (21) 3x7 * 8x8 Ic 23
(19) 6x7 + 8x8 + 3x9 4 35 or (22) 84 + 3x8 + 8x9 c 39

'(20) 5x7 88 6x9 (29 (23) 57 3x8 + 3x9 23

* r.h.s. a a*(sum coeff) 1 1, here a- 2.
•** r.h.s. a 2 (sum of coeff) * 1.

a ." .... , . , , . . a ..- , . . . ..'. . .- .- . 4.. - *.-. -. . .. ..,.' ... ..
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SFor our example, we can put these bounds in Division 1:

- ~ ~] ~ ]'L~J- ~R() amax {5. 4) + 1 -
.=. .-.

x(2) mi -4

j -2

x(1) min - 7 R(2) - max {7,2} + 1 8 8

x(2) - min { 2 11 2

9.-..

o9.'

j-3

x ( 1 ) n u n { m 3 R ( 3 - m a x j 3 , 4 ) + 1 - 5

.x(2) *min 33{ L3i7/8i. L "i ]

The Upper Bounds are:

.9.:UB(4): 8(6) + 5(8) + 7(5) a 123 UB(6):2(6) + 4(8) + 9(5) - 89

UB(5): 4(6) + 3(8) + 7(5) - 83 UB(7):7(6) + I(S) + 8(5) - 90, etc.

.,
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In the Standard Form, the Division Constraints become:

Division 1

(1) 8xl + 5x2 + 7x3 + 82zl C 123 (4) 7xI + Ix2 + 8x3 + 57z2 r 90

(2) 4xl + 3x2 + 7x3 + 54zl 4 83 (5) 8xl + 2x2 + 8x3 + 67z2 • 104

(3) 2xl + 4x2 + 9x3 + 58z1 C 89 (6) + 7x2 + Ix3 + 44z2 c 61

(7) zI + z2 I

where ** coefficients of discrete variables are found as below:

82 = (Upper Bound - R.H.S.) - (123 - 41) - 82

C 83 - 29) - 54

( 89 - 31) - 58, etc.

-

*1%

* p*- .- *
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CHAPTER IV

ONE TEST OF THE PROXIMITY OF THE LINEAR RELAXATION
AS A GUIDE TO PROBLEM DIFFICULTY

Introduction

The purpose of this chapter is to add further confirmation to a

commonly accepted viewpoint, that the -proximity of the linear relaxation

is a gauge of problem difficulty.

From our earlier results we see that the Multi-Divisional

problems, whose LP relaxation optimum is within 1 percent of the integer

Optimum, are much easier to solve than the fixed-charge problems whose

LP relaxation optimum is not within 25 percent of the integer optimum.

In this chapter we present two classes of problems, of similar

construction, whose LP relaxations are very dissimilar in terms of their

proximity to the convex span of the integer solutiuns. We then compare

solution difficulty of the two problems using Martin's BANDBX system.

The first class of problems is a slight variation of the well-

known fixed-charge problem. The second class of problems is of the

fixed-benefit variety, in which a benefit is received if a product is

utilized.

Both problem sets involve "minimum usage levels" which activate

the fixed-charge or benefit, as well as upper bounds on the value of the
* a'pvariable. These two parameters determine how close the LP relaxation is

to the HIP formulation. In the 'usual' setting of these parameters, the

usage level is much smaller than the upperbound. For usual scenarios,
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the fixed-charge LP relaxation feasible set is much larger than the

feasible set of the MIP formulation, even when the best possible (i.e.

sharp) formulation is used. On the other hand, the LP relaxation

feasible set for the fixed-beijefit problem is usually nearly identical

to its integer feasible set. However, by altering the minimum usage

level so that it is much larger than usual, the fixed-benefit LP

relaxation feasible set becomes noticeably larger than its MIP feasible

set. Thus we are able to test how problem difficulty varies as the

5-' differences between the LF relaxation feasible sets and MIP feasible sets

are altered. Since we proved earlier that the LP relaxation feasible set

'". .of any SHARP formulation is exactly the closure of the convex hull of the

'S- "MIP representable set S, we are, therefore, testing the effect on problem

difficulty as the size of the convex hull of a MIP 
representable set

changes.

We remark that we use both minimum usage levels and upper bounds in

our problems, since the fixed charge problems require bounds, while the

fixed-benefit problems require usage levels, in order to be formulated as

MIPs. By giving both problem sets both usage levels 
and bounds, they are

more comparable.

Problems

The general problem description for both the fixed-charge prcblem

(FC) and the fixed-benefit problem (FB) have the mathematical 
form,

P. . - . ., .."e.i .a'.-5-'
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n
min: ( c.x + f.(x.)) (4.1)

j=1 J. J

s.t.: Ax )b

x '#O

where f.(x.) is a nonlinear function defined as follows. For the fixed-

charge case,
p

I."0' if x. -0
(FC) f.(x.) = for all j (4.2)

s. J if 6. c x. c m.J J J J

and for the fixed-benefit problem,

r0 if x. 0
.(FB) f.(x.) for all j. (4.3)

,-Z-s if 6. < x. C M.

In both (4.2) and (4.3), s. is nonnegative, 6. is strictly greater than

zero, and M. is greater than 6..
%I ...

A typical example is the product mix problem in which the objective

is to minimize the cost of resources while satisfying certain quality-

-control, or demand constraints. The cost of the resources involves a

linear portion (c.x.) as well as the nonlinear f.(x.) term. In the FC
.J . J.

case, an additional charge of sj is incurred if the amount of resource
t! .1 -

j(xj) falls within the 16., Mi] interval. In this case, 6. is the

-'4 minimum usage level and M. is the maximum usage level. In the FB c3se, a

benefit, or negative cost C-s.) is received if resource j fa!ls within

;::: (-s
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the 16., M. interval. Note that a value of x. strictly between 0 and .

is not permitted.

n

Defining the set S. as epi(f (x.)), and S - U S., we see that S

is HIP representable. The graph of S. for both problems follows.

f.(x) FC I f' ()B
I

SI I I
,_. JI !

I I
6 M _

Figure 4.1

Fixed-Charge vs. Fixed-Benefit

Using the "extreme point" sharp modelling for the FC prob!em we add

to the constraints in (4.1),

." lj 0 j 2.j '0.)
(iC) A. - 02j

. 1 ), 3 I 0 0
k, e3 ' j 2j

K-

'.,.<.,
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and replace f (x) in the objective function with the term A... The

modelling in the FB case is identical except (-.*s.) is used in the

objective function. Thus we have two very similar modellings whose LP
relaxations are complementary in that the closer the proximity of the FB

LI relaxation to the original HIP set* the worse the proximity of the FC
*- .'" LP relaxation is to its orginal HIP set. A picture best describes this

notion.

FC F

3

"-___.__.,,__.1 .
L... R a ( Hulls

7--

V.

(" ]7]Figure 4.2

-. L.P. Relaxations (Convex Hulls)

,.

.,_.
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Notice the shaded area representing the LP relaxations of both problems.

* - First notice that the difference between the original Tepres:ntable set

*S. (4.4) and the LP relaxation (4.6) is much greater for the FC problem

than the FB problem. Thus, if our conjecture is correct. the typical

fixed charge problem is more difficult than the typical fixed benefit

problem. Suppose we depart from the typical case in which S. is small

with respect to Mi. and incresse the value of the minimuin usage level to

one-half of the maximum usage level. The LP relaxations now become,

FC FB

___I x
6 M.

-S

Figure 4.3

*Effect of Minimum 'Usage Level
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Notice, the FC LP relaxation is unchanged while the FE LP relaxation does

change. More importantly the set L. -(cleonv(S.) -S.) while larger in
.1 j1 .

both cases as 6. increases, its size increase is larger in the FE

problem. Therefore we expect that as 8. increases, the computational

advantage of the FE problem may decrease. Our tests confirm our

expectations.

Exements

We run several samples of the problems described by (4.1), (4.2),

and (4.3) and modelled using the "extreme point" formulation (4.5). We

solve two different sizes of problems, the first (1) contains 10 original

variables and 20 original constraints (i.e. A matrix Is 20 x 10), the

second (11) contains 20 variables and 40 constraints (A matrix is 40 x

20). Using the extreme point formulation, the problems of size 1, have

50 constraints and 80 variables, 20 of which are binary; size II problems

have 100 constraints, 160 variables, of which 40 are binary variables.

For each problem we randomly choose each a. as an integer between
1.3

n
I and 10. Each b., (i-1,n) is selected as b. - I a.., thus x. - I fcr

I jI Ij i

all j, is a feasible solution. Next, we randomly choose each c. as an

integer between 5 and 10. For some problems, the fixed-charge (benefit)

s. is 30% of the total cost of setting a variable to one, i.e. s.

O.3(s..c.). For other problems the percentage of the fixed-charge

(benefit) is increased to 50% of the total. The maximum usage level (M.)

is 4.0, while the minimum usage level (6) varies between 6~ .,60.1 6.

S1.0, and 6. 2.0. Thus1 the minimum usage level varies from 2.5% to 50%

of the maximum usage level.
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After the problem parameters are thus randomly chosen, we create a

pair of problems. In the first member of each pair, the parameters are

C used to construct a fixed-charge problem as described above. The second

p member of each pair is made into a fixed-benefit problem with exactly the

same data.

Along with the usual statistics, we compute the ratio of the fixed-

Benefit/Fixed-Charge solution times. The results are summarized in

Tables 14 through 16. Table 14 summarizes problems of size I and II,

with a minimum usage level of 2.0, and a fixed cost prcentage of 30%.

Table 15 represents problems of size I and II with minimum usage levels

of 1.0 and fixed cost percentage of 30%. Table 16 summarizes problems of

both sizes with minimum usge levels of 0.1 and a 50% fixed cost

percentage.

.40N. As we predict, the FB problem solves faster and more efficiently

than the FC problems. But the results are not as dominant as one might

expect. First, notice that the (LP/Best Discrete Solution) ratio is over

0.9 for both FB and FC, thus the problems are "easy" fixed-cost prob!ems

. to begin with. Problems with lower ratios as in Chapter III may produce

more dramatic results. From Tables 13 and 14 we find that when the

.. minimum usage level is significant with respect to the upper bound, the

FB problems are not much faster, but are more efficient. In fact, in

some instances, the FC problem solves faster even though it requires mcre

nodes to solve the problem than its FB counterpart. As our Fig.

4.3 suggests, problems with small minimum usage levels are easily

solved as FB problems (see Table 15).

., . "



Z- % T 
IV.

133

An interesting discovery among all samples is that the FB

representation is harder to solve as a linear program than the fixed

charge problem. We believe this is partially due to the fact that the c.

values are at least as great as the z. coefficient (s.) values.' ... 3 .3

Therefore in the FC relaxation problem, once the Ax ) b constraints are

satisfied then the A.variables are set to X. x./4. But for the FB
>.•. J .1

problem, the code will initially try to set all A. variables to their

upper limit of one, to obtain the benefits, which forces the x. values toi. .-

be at least the minimum usage level. But, since increasing the

x.variables adds the relatively large c. costs, the code then re-adjusts
%'.%'

the A. values, which tends to increase the number of iterations in the LP

problem.

Table 14. Fixed-Charge vs. Fixed-Benefit
6j. -2.0, % Fixed-Cost - 30%
Using Martin's BANDBX Code

LP/Discrete

Solution Time (CPU) NODES SOLVED Solution
Ratio

Problem FC FB FB/FC FC FB FC FB
Size LP Total LP Total Ratio To To
() Time Find Total Find Total

I (5) 1.44 31.6 2.71 24.2 0.76 31 50 17 30 .952 .979

II (2) 8.55 600* 27.5 590.3** ? 152 2061 138 1811 .9702 .9882

*neither problem was solved within 600 CPU seconds

**only one of the two problems solved within 600 CPU seconds

911' 'Total Nodes unknown as problems were not completely solved.

2Best Discrete Solution found at time of shutoff is used in ratio.

..'

-. 4-...
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Table 15. Fixed-Charge vs. Fixed-Benefit
6. 1.0, 2 Fixed-Cost * 302
Using Martin's BANDBX

LP/Discrete
Solution

.'*" Solution Time (CPU) NODES SOLVED Ratio

Problem FC FB FB/FC FC FB FC IFB
Size LP Total LP Total Ratio To To
(#) Time Find Total Find Total

1 (3) 1.43 23.1 3.37 9.42 0.41 32 37 8 9 0.961 0.995

II (2) 8.35 337.1 23.8 208.3 0.62 67 117 43 52 0.976 0.997

Table 16. Fixed-Charge vs. Fixed-Benefit
6 . a 0.1, % Fixed-Cost - 50%
Using Martin's BANDBX

LP/Discrete
ie(C)Solution

Solution Time (CPU) NODES SOLVED Ratio

Problem FC FB FB/FC FC FB FC FB
Size LP Total LP Total Ratio To To

(#) Time Find Total Find Total

I (3) 1.23 51.2 2.81 2.93 0.06 89 95 1 1 0.933 1.0

11 (2) 6.92 432.4 24.6 24.8 0.06 81 167 1 1 0.969 1.0

II (2) 6.92 432.4 24.6 24.8 0.06 81 167 1 1 0.969 1.0

-- ",6
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CHAPTER V

TWO TESTS OF PROPOSITIONAL LOGIC PROBLEMS

Introduction

The purpose of this chapter is to explore the effectiveness of our
_%..J

Sharp modellings, and "standard" modellings, in problems of propositional

logic (see, e.g. [2] or 1353 for a discussion of this logic).

The first test is entitled "Satisfiability Testing." In this

experiment, we are given a formula in conjunctive normal form. (i.e. as

- a conjunction of a disjunction of literals - a literal being a

propositional letter or its negation) We wish to determine whether the

formula is satisfiable.

The given information for the second experiment is a set of

implications, K L., for i1,...,n where each L. is a disjunction of

literals, and Ki is a conjunction of literals in some experiments, and a

disjunction of literals in others. We wish to determine whether the set

-. of implications imply that a particular literal is true, provided certain

,. other literals are all given as true. The literals last mentioned are

*part of the data of the problem.

*"-' Our interest in satisfiability testing lies in its role as an

"" " important problem type for theoretical analysis, particularly the NP-

* completeness theory. Our interest in implication testing lies in the use

4.
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of implications in the "expert systems" of artificial intelligence 114,

In forcing certain letters A ,..., At to be true and a letter B

to be false, with all implications K. * L i (iul,...,n) true, and

determining if the overall result is consistent, we are in fact

ascertaining if B is forced to be true when the "data" on A1 ,... A are
t

as forced and the "production rules" K i * L1 (i1,...,n) are valid. In

" actual expert systems, more complex relationships are modelled than those

which can be represented by propositional logic, but it is the expert

system paradigm which motivates us.

In the problem studied here, the MIP code is used only as a

consistency tester (i.e., there is no criterion function).

Both propositional logic experiments are MIP representable, in

fact, both can be modelled as pure integer programs. However, it is

unnecessary to actually declare all variables as integer, thus the

problems we solve are mixed-integer programs. One of our initial goals

.5 was to develop an efficient branch-and-bound algorithm to solve these
'S

• "- problems, but we are surprised to find that standard branch-and-bound

code (Martin's BANDBX and APEX IV) solve the problems very effectively.

In fact, as shown later, we are forced to alter our random generator to

artificially create difficult problems in order to compare the

computational effort of different modellings used.

Both modellings solve the problems so efficiently that we stop

comparing modellings and concentrate solely on creating difficult problem

instances. I.e., for satisfiability problems of the size we

*
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study, there is no advantage to the newer methods, since random

propositional formula are easy to decide by branch-and-bound.

Problems

The propositional logic formulas for the satisfiability

experiments are developed in the following manner. Given the total

number of literals to choose from, 1, the number of literals per clause,
h6

s (s A), and the total number of clauses in the formula, c, we randomly

generate c clauses uf size s in the I literals and test whether the

resulting formula is satisfiable. For instance, if t-5, s-2, and c=3,

the following formula may be randomly generated,

K - (A V A5) A (A V A ) A (A V A ) A (A V A ) (5.1)
2 5 1 5 1 2 4 5

where "V" indicates "or," "A" indicates "and", also -A. implies negation

- of the literal Ai. To model the formula as a mixed-integer program, we

assign binary variables to each literal of the formula such that if Ai is

true then its associated variable xi  1, similarily if Ai is false then

x. 0 0. Negation of literals, -A., are represented as I-x.. To model,3'. • 1

(5.1) we first model the individual clauses, i.e. (A1 V A2 ... V A 3

Mode!ling the V-connective

For an expression of the form

A IV A2 V ... A( (5.2)

where each A. has been assigned a variable x. and a variable x is

assigned to A, a non-sharp modelling follows:

all
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x Cx +x . x

1 2 t

Our Sharp modelling of the expression is;

,X. x ) x. for j1,t (5.4)

x .x + x 2 ...+ X t .1 2

The non-sharp model (5.3) is similar to some representations which

have been used (largely unsucessfully) in practice.

The model (5.4) which we are calling "Sharp" here is similar to
."2

one used successfully in practice in a setting where the logical

constraints were part of a much larger group of constraints [Johnson,

et al., [311, and has the same character as the "disaggregated"

constraints for a distribution center with a fixed-charge [Graves

Geoff., 191. In both settings it is crucial to successful

A. implementation.

We call (5.4) "sharp" by extension of terminology. The set S to

be modelled has the form S - P1 U S', where PI - {x, Xl,..,xt)

x Xl - xt a 0) is a polyhedron and S' - {(x, x ... , x 1

..4 %x. ) I, all x. c{0,11) is a bounded-MIP representable set (in fact, the
L.* .. , et- 1

union of 2 polyhedra). We relax S' to the polyhedron

P w {(x, X,...,x) x = , ;x 1, 0 r x. 4 all j) (note that
2 (t o3 t

that P conv (S')) and then we model P1 U P2 by the polyhedral method
21 2

as follows:

•.. . ............. . ....-..... ,.... ................



139

(1) (2)X = x +X (5.5)

(1) (2) al

(1) (2)
x = +-1  x all 2

(1) (2)
xj. 0 all .3 jLx. .

(2)
0 x I 2 all j

(2) (2)
upon simplification, we have x =0 + A2 

=  2 x*=0 4 xj = xj , and
(2)

we note that x. - x Q X 2 - x. This gives (5.4) which is sharp for

the given relaxation P1 U P2 of S 
= PI U S-.

All literal variables (x.) are declared binary, while the formula

variable (x) is not declared integer even though it is forced to integer

values. Notice our Sharp modelling involves (t+l) constraints while the

,.4 ~non-sharp model requires only 2 constraints per expression.

-'. Modelling the "A" connective. For an expression of the form:

A A A A A ... A A (5.6)
1 2 "

where each literal has already been assigned a binary variable x., and A

is assigned a variable x, the model is developed in the following manner.

Since (5.6) is equivalent to

',%C

4.,-'

,4e4-

*1°
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A -A IV -A 2V ... V -At

we use the "" connective modellings replacing x with 01-x) and x. with

(I-xi). The nonsharp model is:

t
Z X. )tx (5.7)

-X + I X. (t-1%,. (5.8)

The corresponding Sharp model is,

x 4 X. for jul,t (5.9)

t

The sharp modellings (5.4) and (5.9) are based upon our polyhedral fcrrn

mentioned in Chapter II. To clarify this modelling, the expression (5.2)

can be expressed as,

x 0 x =

X, 0 or 0 4 X. 4 1 for all j (5.10)

tt

j.7x........
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with all variables non-negative. Assigning Al as the multiplier for the

left side of (5.10) and X2 as the right side multiplier, oor polyhedral

form for MIP representations simplifies to:

< j=1....t

which simplifies to (5.4).

Combining the modellings of the "V"t connective and the A

* connective allows us to model conjunctive normal form formulas and, in

fact, any propositional expression in 'V 8 ""and .' we next

illustrate this with the formula (5.1)

The non-sharp representation is,

X + (1-x x (5.11)
25 6

X+ (- r.2x
"2 (-5) 6

1 * 2  7

1~ *2 (2 7

xx x
4 5 8

0% %
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x4 + x 5 4 2x8

x6 + x7 + x 3x9
-x9 + x 6 + x 7 +x8 4 2

X , x ,. x are binary
S29 A 4  ~5

all variables > 0.

In the above, x6, 17 x8 are variables assigned to each of the clauses of

the formula, and x9 is assigned to K. Therefore, once the constraint

x9 - 1 is added to the constraint set (5.11), the formula (5.1) is

satisfiable if and only if the constraint set is consistent.

L-,.1 Modelling the "." Implication. The implication testing experiment

requires all implications (Ki 
+ Li) to be true, with (Ki * Li) equivalent

to (~ K. V L.). Therefore each implication is modelled as an "V"

connective. We next work an example.

The implication

(~ A A B A - C) * ~D (5.12)

is transformed to the disjunction

A AV -B V C V D (5.13)

(since (~ A A B A - C) is ( A V ~ B V C ) ). Then (5.13) is modelled

*1 as

. .. . .~. .. ... .. ._
m.., -,, ,,c, '- , ' , '"'- " " ," ,";',','-<- , . * ",, ' * "- , ' '" '" '" ' " "" "" "' ' " "" " " " ""'-"
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X +(-x 2)+x 3+(-x 4 ) 4 1 (5.14)

and [x +(l-x )+x +(l-x )]/4 - I

1 2 3 4

Since the implication is required to be true, in (5.14) we have

substituted '1' for the variable x which would (in a setting of nested

logical connectives) have been assigned to the entire subformula in

(5.13).

.. The second constraint in (5.14) is equivalent to x - x2  3  4

. 2, which is redundant for 0 x. < 1, so it can be dropped. If (5.9)

is used instead of (5.3) to model (5.13), the second constraint in

(5.14) becomes four constraints, specifically: I ) K 1 , 1 ) 1 - x2, 1 )

x, I ) I - x,. Each of these is redundant, and can be dropped.

Therefore, in this example, due to simplifications both (5.3) and (5.4)

yield the same modelling, i.e. the first constraint in (5.14), called a

"generalized set covering constraint," Many of our runs are done via

such constraints, with no difference between (5.3) and (5.4). By using

-,.. this modelling, with all propositional letters declared binary, we have

"... one constraint per implication. In effect, we transform our logic

problem into a generalized set covering problem.

In some other experiments reported below, there will be a

difference between (5.3) and (5.4) formulations.

For example, to model the implication

(A V B V C) * D (5.15)

we reduce it to

.....
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(~A A B A c) v D

(as - (A V B V - C) is (~ A A B A C), which has a nested structure. We

introduce a binary variable x for the subformula A A B A C, and the
;..

modelling via (5.3), (5.7) becomes

3x 1 (C -x) (-x ) + x3  (5.16)

-x + (-x ) + (l-x ) + x3 i 2

I P (x x)/2

. -I x + x

4

The modelling via (5.4), (5.9) becomes

x I-x (5.17)

x x

- .) x ;x

4
%"- I x 4

In (5.16), the third constraint is redundant and in (5.17) the third and

S-'. fourth constraints are redundant. However, even with simplifications, we

obtain different representations.

In general, if what preceeds the implication (i.e. K. in K. Li)

is a conjunction of literals, simplifictions result in the same

oS.,°'

92°



145

generalized set covering problem for both sharp and nonsharp

-'- formulations. If disjunctions occur there, even after simplifications,

.. - the formulations are different.

In our experiments, we try runs that included the simplifications,

some of which are the same (i.e. generalized set covering) for both the

sharp and nonsharp representations, and some of which are different. In

addition, in some runs we do not make the simplifications which are

possible and deliberately left redundant constraints in the program,

simply to see what happens when these methods are used "blind."

Furthermore, different codes are used on different runs. The

initial runs on Martin's code were so fast that we decided to "size up"

our problems, and went to APEX IV when it arrived on the Tech campus in

September 1983. As we shall see, the runs continue to be fast,

regardless of the formulation.

As we discuss the experiments in what follows, we will specify

what formulations are used, whether or not simplications are made and

what code is used.

We remark that, in the "expert systems" when implications like

Ki  Li occur, typically, K. is a conjunction of literals and L. is, in

fact, a single literal, and it is rare for more than six or seven

literals to occur in one implication. Such simple implications are of

course of the generalized set covering variety. However, more complex

implications can also occur.

Problem Generators. Each clause within both the Satisfiability

9and Implication Testing experiments is generated by randomly selecting

-.. . . . . . . . . ."' " " "- " ."' ""."'''" '" " " ""'": ' """" ' : ;'
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the a literals to appear in the clause. The literals are selected in the

following manner. First, a random number, r, in (0,1.0) is selected,

* then, for the first literal of the clause, the interval (0, 1.0) is

divided into X equally-sized intervals. The interval in which r belongs

determines the first letter of the clause. To determine the next letter

a new r is generated and the interval is now divided into (1-1)

intervals, insuring that any one letter is never selected twice in the

same clause. Once the clause consists of s literals, we determine

% whether each will appear as a letter, or the negation (.A,) Of the

letter, with equal probability.

For the SatisfiabiliLZ tests, the first occurrence of any literal

is randomly determined to be either a letter or its negation, each having

equal probability of occurring. After the first occurrence, each

subsequent occurrence is the opposite of the preceding logical type

(i.e., if the first occurrence of Al is as Al, the next is -AI, the next

Al). The selection technique is used to artificially make the problems

difficult.

Once "c" independent clauses of the Satisfiability test are

identified, each literal is scanned to determine the number of times it

occurs. Any literal that appears only once, in one clause, is eliminated

along with the entire clause. The scanning routine continues eliminating

* literals and clauses until each literal of the formula appears, as either

a true literal or its negation, in at least two separate clauses. This

last "pruning" step is to make the problems harder for humans to solve.

04 1 After all, a letter which appears in only one clause can easily be given
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a truth value to make that clause true, thus simplifying the problem. We

note, however, that we had earlier done some trial runs without pruning,

and this option (used below) does not seem to make any difference to

machine solution.

The Implication Testing experiment utilizes a different problem

generator. The individual clauses (Ki, and L.) are generated randomly as

in the Satisfiability experiment. However, whether a literal occurs as a

true literal or its negation is randomly determined for each occurrence.

Each implication consists of "A" clauses on the left (K.) and "' clauses

on the right (Li). (e.g. (Al A A2) + (Al V A3).

Given the total number of literals present in the generated

Implications problem, we fix a certain percentage of these letters to be

either true or false. Then we test whether the overall system of

implications and settings are consistent. However, to increase problem

difficulty we require that at least one literal per implication be free

(i.e. not fixed). In some tests we increase the number of free

variables per implication to three.

Results

Satisfiability Experiment. The most significant result of our

satisfiability experiments is the ease of their solution as mixed-integer

programs. Tables 17 and 18 summarize our experiences using the BANDBX

and Land-Powell's code, respectively. The actual problem sizes ranges

from 114 constraints, 110 variables, 38 binary for the nonsharp modelling

of Table 18, to 315 constraints, 132 variables 43 of which are binary in

the ninth problem of Table 17. Problems sizes vary with the total number
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of literal negations presents but for an approximate size use the

following formulas.

Constraints Variables Binary

Shar 4C _ +_L2L__C_

oSharp 4C + L 2L + C L

,..NonSharp 2C +L 2L +C L

Aside from being extremely easy, even after our attempts to

"harden" the problems, notice the sharp modellings are slower than the

nonsh-rp modellings in nearly all instances. This is to be expected when

the sharp formulation in this case is not better than the nonsharp

formulation and yet has more constraints (recall that problems of this

type are simply generalized set covering problems). The sharp modelling

-V appears to perform worse than the nonsharp modelling as the number of

literals per clause increases (Table 17). On the other hand, an increase

in the number of clauses appears to affect the nonsharp modelling

slightly more than the sharp (Table 18).

.'4

-V.

--

. . . . . . . . . . . '
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Table 17. Satisfiability Tests Using BANDBX.

Time (CPU Seconds)
Problem Total Nodes Sharp Non Sharp
Size Satisfiable? Sharp Non Sharp LP Total LP Total

L-31,C"44,S=2 No 2 2 9.9 11.8 4.0 6.5

L-35,C=45,S=2 No 3 3 12.8 21.5 4.7 9.8

L=37,C=45,S-2 Yes 1 4 8.7 8.8 4.7 10.8

L36,C=52,S=2 No 3 3 16.0 27.0 6.0 14.4

L=46,C-63,5S=2 No 2 3 25.7 29.8 8.7 21.3

L=53,C=68,S=2 Yes Too 3 model too large 10.1 21.5
Large

Lw-36,C=39,S=3 Yes 3 1 10.1 13.4 3.9 4.1

L-38,C=45,S=3 Yes 3 2 18.1 29.6 5.5 6.5

W L-43,C=45,S=4 Yes 2 1 14.6 16.6 5.2 5.4

. L=40,C=45,S=4 Yes 2 2 34.4 36.6 5.3 7.0

L=25,C-35,S-5 Yes 1 1 173.4 173.5 3.5 3.6

[i A'

F.-.'
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Table 18. Satisfiability Tests using Land-Powell's Code.

Time (CPU Seconds)

Problem Total Nodes Sharp Non Sharp
Size Satisfiable? Sharp Non Sharp LP Total LP Total

, L=38,C=40,S=2 Yes 2 1 8.4 9.7 3.4 3.5

L=42,C=40,S=2 Yes 1 1 7.1 7.3 3.6 3.7

Lu44,C=45,S=2 Yes 2 2 9.7 12.6 4.8 6.5

L=45,C=45,S=2 Yes 2 5 9.1 11.0 4.7 13.0

L-44,C-52,S,2 Yes 1 1 12.5 12.6 5.5 5.6

L-43,C=55,S-3 No 2 3 14.7 17.1 6.3 13.7

Ln45,C60,S=3 No 2 3 19.3 22.0 7.6 13.4

L=45,C=60,S=4 No 2 3 17.7 23.9 7.3 15.5

1.1

.- .. ,

- . *- ***.*** ' . '.--*..p . . .

o • . .*. :-
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Implications Testing Experiment. This experiment is performed

entirely using CDC's APEX IV mixed-integer programming code, and as in

the Satisfiability experiments, the branch-and-bound code, with few

exceptions, solves these problems easily. The implications studied here

r are of the generalized set-covering type. In Tables 19 - 24 we do not

apply our rule of having at least n~ne free literal per implication, and

the results show these random problems to be very easy. Recall that each

implication requires only one generalized set covering constraint.

Therefore the number of constraints in these problems equals the number

of implications plus one constraint for each literal fixed at either true

* (=1) or false (-O).

Since we do not keep track of how many letters in a given clause

are free (not fixed), it is possible that all letters (or all but one) in

many clauses are fixed. Such problems tend to be very easy for humans to

solve by a scanning procedure similar to our "pruning." Therefore in the

next experiment we insure that the letters left free provided instances

of NP-hard problems.

Table 20 summarizes problems in which there are five literals in

each K. and 2 in each L. an example is (Al A -A3 A A A A5) *(A2 V A3).

Each implication must have at least three literals not assigned an

initial value. This requirement greatly restricts the literals which we

are able to assign as true or false. In the seventh example we are able

to initialize only eleven of the fifty literals. In the "Total Fixed"

column we indicate that each problem instance is solved twice. First the
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Table 19. Implications Testing Using APEX IV.
No Free Variables Required.

Problem Parameters
Literals/ Time

Total * of Clause Total Consistent Nodes APEX Units
Implications Literals K L Fixed ? Total LP Total

300 295 3 1 60 Yes 1 7.8 8.2

300 250 3 2 25 Yes 1 2.2 2.6

100 100 3 1 10 Yes 1 0.9 1.2

300 200 3 1 20 Yes 1 2.2 2.7

300 294 3 1 30 Yes 1 2.2 2.7

200 198 3 1 20 Yes 1 1.7 2.2

300 299 3 1 90 Yes 1 10.7 10.q

300 300 3 1 120 Yes 1 14.2 14.6

300 293 3 1 2 Yes 1 2.5 2.9

300 293 3 1 150 No 1 INFEAS 4.0

300 293 3 1 120 Yes 1 3.7 4.0

300 298 3 1 120 Yes 1 3.0 3.3

300 292 3 1 150 No 1 INFEAS 3.3

300 298 3 1 150 No 1 INFEAS 4.6

300 298 3 1 150 No I INFEAS 17.7

li

...

91'

, * . . . .
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Table 20. Implication Tests Using APEX IV,
3 Free Literals per implication

Problem Parameters
LtIerals/! Time

Total # of Clause Total Consistent Nodes APEX Units
Implications Literals K L Fixed ? Total LP Total

300 160 5 2 58Btol1** Yes 1 1.4 1.8

58 to 0++ Yes 1 6.0 6.4

300 120 5 2 38 to1I Yes j1 1.0 1.4

38 to 0 Yes 2 5.1 5.9

300 100 5 2 34 to1I Yes 1 1.3 1.7

34 to 0 Yes 1 4.2 4.6

400 100 5 2 29 to 1 Yes 1 0.9 1.3

29 to 0 Yes 1 4.4 4.8

400 60 5 2 13 to1I Yes 1 1.1 1.4

13 to 0 Yes 1 2.6 2.9

500 60 5 2 14 tolI Yes 2 1.8 2.9

14 to 0 Yes 3 32.5 47.5

500 50 5 2 11itolI Yes 1 1.2 1.6

* 11 toO0 Yes 2 3.6 4.7

600 60 5 2 14 to I Yes 5 4.2 35.3

14 to 0 Yes 1 25.3 25.7

*The APEX IV code was shut off before reaching a solution.

**This notation "15 to P means 15 literals are given as true (-I)
and one is given as false (-0).

++This notation "15 to 0" means the same 15 literals which were
previously given as true, one given as false (-0). Otherwise
the problems within each set of lines are identical. In this
case, there are actually 59 literals given as false (-0).
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Table 21. Implications Tests, Affects of Fixing Literals,
1 Free Literal per Implication.

Problem Parameters
Literals/ Time

Total of Clause Total Consistent Nodes APEX Units
Implications Literals K L Fixed ? Total LP Total

400 100 2 1 38 No 1 INFEAS 11.3

37 No I INFEAS 10.9

S 36 No I INFEAS 11.8

A 34 No 1 INFEAS 16.5

14 33 No 1 INFEAS 16.4

E 2 No 1 INFEAS 17.4

31 No 1 INFEAS 24.9

3o No I INFEAS 28.1

29 No 1 INFEAS 21.6

A 28 No 1 INFEAS 22.5

S 26 No 1 INFEAS 32.5

24 No 1 INFEAS 31.5
22 No 1 INFEAS 45.0

2o No 1 INFEAS 40.9

A 18 No I INFFAS 71.0

[.B 16 No I INFF.AS 62.4

0 14 No I INFEAS 84.1

V 12 No 13 88.7 266.8

E 1o No 16 77.0 299.8

8 Yes 13 75.6 170.2
%.
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problem is solved with the literals assigned to be true, then the

identical problem is solved with the same literals assigned to be fa!se

(-0). Since our random generator provides true and negation instances ci

each literal with equal probability, whether a litera] is a trt

*-- or false value should not create more difficult prcblems. H-we',. we

. find that when literals are assigned false (-0) val..es, t'e ,

more difficult to solve using the APEX IV code. Desrite tl -

unexplainable phenomenon, the most prominent feature ef t..e, , e

their ease of solution. Again, what is easy or hard fcr .- .. ,

easy for machine solution.

In table 21 we solve only one problem instance, bot a.i tt t.a'

" number of literals assigned a true value. Each ,mplicatier ccrnsst,

only two literals in each Ki clause, and each Li is a singleton cla.se.

The problem becomes more difficult as it approaches the feasible'

infeasible boundaries. In fact, we believe that some of the hardest

problems are at this boundary, and in these tests we are trying to create

a hard problem. Only the last three instances found the LP relaxation

feasible, and these three instances are much harder than the more

infeasible instances. The last entry actually found a feasible solution,

and its solution time is much faster than the infeasible example just

above it.

O Using ideas from our experiment in connection with Table 21,

Tables 22 and 23 depict problems with fewer literals initially fixed.

These problems are difficult, one instance requires over 2000 APEX units

O. of time. (Recall, APEX units are virtually equal to cpu seconds.)

- .. .:-a
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Table 22. Implication Tests Using APEX IV,
I Free Literal per Implication.

Problem Param ters

Literals/ Tire
Total # of Clause Total Consistent Nodes APEX Units

Implications Literals K L Fixed ? Total LP Total

400 100 2 1 15 to 1* No 3 46.4 71.8

400 100 2 1 15 to I No 1 INFEAS 63.2
15 to 0++ No 7 135.2 193.9

400 100 2 1 15 to I No 21 77.7 237.6
15 to 0 Yes 3 139.8 173.4

400 100 2 1 10 to 1 No 1 INFEAS 100.0
10 to 0 No 1 INFEAS 147.7

400 100 2 1 10 to 1 No 1 INFEAS 84.7
10 to 0 No 243 109.3 2083.5

400 100 2 1 5 to I Unknown 201* 74.4 557*

400 100 2 1 5 to 1 Unknown 481* 66.9 634*

400 100 2 1 1 to 1 Unknown 408* 44.0 716*

, *The APEX IV code was shut off before reaching a solution.

**(see Table 20)

++(see Table 20)

........ ......................
" ? .' " ' .' -" i . " -' ." .. -" .' .- .-.' . - -' ., .-. ' , ... - ." . . -" -" , . .-. - .- , ' ." c - * * .. * 't : -' , - % , . -
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Table 23. Implications Tests Using APEX IV
1 Free Literal per implication.

Problem Parameters
Literals/ Time

Total # of Clause Total Consistent Nodes APEX Units
implications Literals K L Fixed ? Total LP Total

300 100 2 1 1 to 1 Yes 67 27.9 261.9I to 0 Yes 8 21.2 53.0

300 100 2 1 1 to 1 Yes 32 25.7 184.2
1 to 0 Yes 13 47.6 131.0

300 100 2 1 1ito 1 Yes 14 11.0 59.6
1 to 0 Yes 16 13.8 92.9

300 100 2 1 15 to I Yes 12 15.9 51.3
15 toO0 No 3 68.6 81.8

300 100 2 1 15 to 1 Yes 21 15.0 107.6
15 to 0 No I INFEAS 69.4

300 100 2 1 15 to 1 Yes 8 I9. 61.3
15 to 0 Yes 25 59.2 161.7

300 100 2 1 15 to 1 NO 13 35.7 92.5
15 to 0 No 83 64.6 431.0

300 100 2 1 15 to I Yes 7 38.6 80.1
15 to 0 Yes 49 44.4 262.0

300 100 2 1 15 to I Yes 19 17.8 82.4
15 to 0 Yes 6 39.0 57.4

300 100 2 1 15 to I No 2 29.7 35.6
15 to 0 Yes 5 50.4 69.4

*300 100 2 1 15 to 1 No 36 27.5 192.5
15 to 0 Yes 88 93.8 570.9
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Table 24. Implications Tests, Probability of Negations - 0.3,
I Free Literal per Implication.

Problem Parameters
.Lterals/ Time

Total # of Clause Total Consistent Nodes APEX Units
Implications Literals K L Fixed ? Total LP Total

300 100 2 1 15 to 1 Yes 10 28.9 64.6
15 to 0 Yes 11 60.0 91.8

300 100 2 1 15 to I No 1 INFEAS 60.3
15 to 0 Yes 10 68.6 102.6

300 100 2 1 15 to I Yes 4 40.3 61.0
15 to 0 Yes 14 79.2 123.3

300 100 2 1 15 to I Yes 23 20.6 126.7
. 15 to 0 No 3 79.0 88.7

- 300 100 2 1 15 to 1 No I INFEAS 33.8
15 to 0 Yes 12 64.0 127.2

300 100 2 1 15 to I Yes 28 36.9 177.0
15 to 0 Yes 16 104.9 164.8

0"-w"

-a.

.
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4?.%

.' . "2.



-. . . ; *.-. *..;-. - .

159

U In this manner, we succeed in producing problems which are hard to

*solve, apparently by being at the feasible/infeasible boundary. What

- seems hardest for the machine is when the LP is feasible, but barely,

while the IP is infeasible. However, since these problems insure only

% one free letter per rule, they may have been easier 
for humans.

Again making literals false produces much more difficult problems,

although in many cases these problems require much fewer branch-and-bound

nodes. As a first attempt to explain why setting literals to false

results in more difficult problems, we alter our problem generator in

favor of generating true literals. In Table 24 the probability of a

literal appearing as a negation is reduced to 0.3. For these problems we

expect setting literals to be true to be even faster than before.

Unfortunately that does not appear to be the case as 2 of the 6 problems

actually solve faster when literals are forced to be false.

Table 25, 26, and 27 summarize the results of implications tests

in which disjunctions occur in the clause preceding the implication.

N,(i.e., for K. * Lit, both K i and Liare disjunctions of literals.) This

test and corresponding integer model is outlined by formulae (5-15) to

- (5-17). We shall name model (5-16) as the STANDARD model, and model

(51)as the SHARP model. For these tests we alter the problem

generator such that each occurrence of a particular letter is exactly the

opposite (True or False) of its previous occurrence. Thus, these

problems instances are constructed to be difficult problems.

As (5-16) shows, the STANDARD model requires three constraints and

one additional variable per implication. From (5-17), we see that the
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SHARP model requires (S+) constraints and an additional variable per

implication, where S is defired as the number of letters appearing in the

K. disjunction. Based upon well-known results concerning constraint
.disaggregation, (see 1191, 131], [471), and our own previous experiments,

we expect the SHARP formulation to outperform the STANDARD modelling

.. despite its larger size. Our results support our expectation.

Tables 25 and 26 depict identical implication problems except in

if , Table 25 the known letters are given to be true (set to 1) whereas in

Table 26, the same letters are given as false (set to 0). The size of

the implication problems of these tables result in modellings consisting

of between 300 to 700 constraints and approximately 270-350 binary

variables. Some problems involve a singleton on the right of the

impliction (Liis a singleton) and others have a disjunction of two

letters. Notice that in both (5-16) and (5-17) only one constraint is

affected by adding disjunctions on the right of an implication.

For all problems in Table 25, the SHARP modelling overcomes its

larger size and solves each instance faster and with fewer nodes. In one

instance, (the third sample), the SHARP model finds the LP infeasible

while the lack of sharpness allows the STANDARD to solve the LP and

branch to 11 nodes before reaching the same conclusion. The node counts

.. indicate at least a 4 to I reduction in favor of the SHARP model. For

fr these samples, the SHARP LP is solved faster than the smaller, however

more dense, STANDARD LP in 4 of the 9 instances.

Table 26 again indicates that setting the given variables to zero

seems more difficult to APEX IV than setting the same variables to one.

E .i *., . . .. •,, . %.,
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Aside from that, the SHARP modelling is again faster and requires at

most one-third the number of Branch-and-Bound nodes. For harder problems

(see instances 5, 6, 9) the SHARP model displays at least a 15 to I

*advantage concerning node counts and in problem 6, the node comparison is

at least 40 to 1. The actual time comparisons are unavailable as the

.-: STANDARD model fails to solve the instances after 5 minutes of cpu time,

and still cannot solve problem 6 after one hour of cpu time (APEX

units)!

In two inconsistent problems, the inconsistency is discovered with

the SHARP LP, whereas the STANDARD modelling requires up to 82 branch-

"" and-bound nodes before declaring one of them infeasible.

Table 27 summarizes problems with disjunctions of five letters on

the LHS of each implication. Therefore each implication requires 6

constraints in the SHARP (5-17) modelling, and only three for the

STANDARD (5-16) modelling. Even though the SHARP models now have twice

the constraints, and their corresponding LP relaxations take longer to

solve, they easily outperform the STANDARD formulation. The node count-;.

comparison reaches 70 to I in one instance and the total enumeration time

advantage of the SHARP modelling increases as the problems become mcre

difficult.

Summary

In general, both the SHARP and STANDARD models solve these logic

S..." problems very efficiently, and in most cases, very quickly. We do find

an advantage of the SHARP modelling for implication/production rule

problems in which disjunctions of letters occur before the implication

(K. of K. * L.). This supports both ours and earlier efforts involving
LL 3

. .. %

4.-'. ''.
--- --4,., M a.m ,a s ' - - ,: " " " - , .,. .,',.,,.:,. . ? - .. -".-,.
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constraint disaggregation. However our model comes automatically whereas

previous disaggregations involve problem preprocessing. (see [31])

We are able to generate more difficult problems by exploring the

feasible/infeasible boundaries. Whether these intentional efforts to

create difficult problems is more or less realistic requires empirical

work with actual expert systems. The results clearly indicate that these

logic problems are very efficiently solved as math programs, especially

considering that the mixed-integer branch-and-bound codes employed areP. not specialized binary variables codes, but general mixed-integer codes.

a.
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